Adversarial Imitation Learning from Visual Observations using Latent Information
- URL: http://arxiv.org/abs/2309.17371v3
- Date: Thu, 23 May 2024 22:42:04 GMT
- Title: Adversarial Imitation Learning from Visual Observations using Latent Information
- Authors: Vittorio Giammarino, James Queeney, Ioannis Ch. Paschalidis,
- Abstract summary: We focus on the problem of imitation learning from visual observations, where the learning agent has access to videos of experts as its sole learning source.
We introduce an algorithm called Latent Adversarial from Observations, which combines off-policy adversarial imitation techniques with a learned latent representation of the agent's state from sequences of observations.
In experiments on high-dimensional continuous robotic tasks, we show that our model-free approach in latent space matches state-of-the-art performance.
- Score: 9.240917262195046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We focus on the problem of imitation learning from visual observations, where the learning agent has access to videos of experts as its sole learning source. The challenges of this framework include the absence of expert actions and the partial observability of the environment, as the ground-truth states can only be inferred from pixels. To tackle this problem, we first conduct a theoretical analysis of imitation learning in partially observable environments. We establish upper bounds on the suboptimality of the learning agent with respect to the divergence between the expert and the agent latent state-transition distributions. Motivated by this analysis, we introduce an algorithm called Latent Adversarial Imitation from Observations, which combines off-policy adversarial imitation techniques with a learned latent representation of the agent's state from sequences of observations. In experiments on high-dimensional continuous robotic tasks, we show that our model-free approach in latent space matches state-of-the-art performance. Additionally, we show how our method can be used to improve the efficiency of reinforcement learning from pixels by leveraging expert videos. To ensure reproducibility, we provide free access to our code.
Related papers
- Visually Robust Adversarial Imitation Learning from Videos with Contrastive Learning [9.240917262195046]
C-LAIfO is a computationally efficient algorithm designed for imitation learning from videos.
We analyze the problem of imitation from expert videos with visual discrepancies.
Our algorithm performs imitation entirely within this space using off-policy adversarial imitation learning.
arXiv Detail & Related papers (2024-06-18T20:56:18Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Imitation from Observation With Bootstrapped Contrastive Learning [12.048166025000976]
Imitation from observation (IfO) is a learning paradigm that consists of training autonomous agents in a Markov Decision Process.
We present BootIfOL, an IfO algorithm that aims to learn a reward function that takes an agent trajectory and compares it to an expert.
We evaluate our approach on a variety of control tasks showing that we can train effective policies using a limited number of demonstrative trajectories.
arXiv Detail & Related papers (2023-02-13T17:32:17Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
This paper proposes a novel neural-network-based approach to progressively and autonomously develop pixel-wise representations in a video stream.
The proposed method is based on a human-like attention mechanism that allows the agent to learn by observing what is moving in the attended locations.
Our experiments leverage 3D virtual environments and they show that the proposed agents can learn to distinguish objects just by observing the video stream.
arXiv Detail & Related papers (2022-04-26T09:52:31Z) - A Free Lunch from the Noise: Provable and Practical Exploration for
Representation Learning [55.048010996144036]
We show that under some noise assumption, we can obtain the linear spectral feature of its corresponding Markov transition operator in closed-form for free.
We propose Spectral Dynamics Embedding (SPEDE), which breaks the trade-off and completes optimistic exploration for representation learning by exploiting the structure of the noise.
arXiv Detail & Related papers (2021-11-22T19:24:57Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Co$^2$L: Contrastive Continual Learning [69.46643497220586]
Recent breakthroughs in self-supervised learning show that such algorithms learn visual representations that can be transferred better to unseen tasks.
We propose a rehearsal-based continual learning algorithm that focuses on continually learning and maintaining transferable representations.
arXiv Detail & Related papers (2021-06-28T06:14:38Z) - Seeing Differently, Acting Similarly: Imitation Learning with
Heterogeneous Observations [126.78199124026398]
In many real-world imitation learning tasks, the demonstrator and the learner have to act in different but full observation spaces.
In this work, we model the above learning problem as Heterogeneous Observations Learning (HOIL)
We propose the Importance Weighting with REjection (IWRE) algorithm based on the techniques of importance-weighting, learning with rejection, and active querying to solve the key challenge of occupancy measure matching.
arXiv Detail & Related papers (2021-06-17T05:44:04Z) - Domain-Robust Visual Imitation Learning with Mutual Information
Constraints [0.0]
We introduce a new algorithm called Disentangling Generative Adversarial Imitation Learning (DisentanGAIL)
Our algorithm enables autonomous agents to learn directly from high dimensional observations of an expert performing a task.
arXiv Detail & Related papers (2021-03-08T21:18:58Z) - Hierarchically Decoupled Spatial-Temporal Contrast for Self-supervised
Video Representation Learning [6.523119805288132]
We present a novel technique for self-supervised video representation learning by: (a) decoupling the learning objective into two contrastive subtasks respectively emphasizing spatial and temporal features, and (b) performing it hierarchically to encourage multi-scale understanding.
arXiv Detail & Related papers (2020-11-23T08:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.