Text-image Alignment for Diffusion-based Perception
- URL: http://arxiv.org/abs/2310.00031v3
- Date: Mon, 1 Apr 2024 17:27:12 GMT
- Title: Text-image Alignment for Diffusion-based Perception
- Authors: Neehar Kondapaneni, Markus Marks, Manuel Knott, Rogerio Guimaraes, Pietro Perona,
- Abstract summary: Diffusion models are generative models with impressive text-to-image synthesis capabilities.
It is unclear how to use the prompting interface when applying diffusion backbones to vision tasks.
We find that automatically generated captions can improve text-image alignment and significantly enhance a model's cross-attention maps.
- Score: 12.98777134700767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models are generative models with impressive text-to-image synthesis capabilities and have spurred a new wave of creative methods for classical machine learning tasks. However, the best way to harness the perceptual knowledge of these generative models for visual tasks is still an open question. Specifically, it is unclear how to use the prompting interface when applying diffusion backbones to vision tasks. We find that automatically generated captions can improve text-image alignment and significantly enhance a model's cross-attention maps, leading to better perceptual performance. Our approach improves upon the current state-of-the-art (SOTA) in diffusion-based semantic segmentation on ADE20K and the current overall SOTA for depth estimation on NYUv2. Furthermore, our method generalizes to the cross-domain setting. We use model personalization and caption modifications to align our model to the target domain and find improvements over unaligned baselines. Our cross-domain object detection model, trained on Pascal VOC, achieves SOTA results on Watercolor2K. Our cross-domain segmentation method, trained on Cityscapes, achieves SOTA results on Dark Zurich-val and Nighttime Driving. Project page: https://www.vision.caltech.edu/tadp/. Code: https://github.com/damaggu/TADP.
Related papers
- FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - Direct Consistency Optimization for Compositional Text-to-Image
Personalization [73.94505688626651]
Text-to-image (T2I) diffusion models, when fine-tuned on a few personal images, are able to generate visuals with a high degree of consistency.
We propose to fine-tune the T2I model by maximizing consistency to reference images, while penalizing the deviation from the pretrained model.
arXiv Detail & Related papers (2024-02-19T09:52:41Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - Reinforcement Learning from Diffusion Feedback: Q* for Image Search [2.5835347022640254]
We present two models for image generation using model-agnostic learning.
RLDF is a singular approach for visual imitation through prior-preserving reward function guidance.
It generates high-quality images over varied domains showcasing class-consistency and strong visual diversity.
arXiv Detail & Related papers (2023-11-27T09:20:12Z) - Helping Hands: An Object-Aware Ego-Centric Video Recognition Model [60.350851196619296]
We introduce an object-aware decoder for improving the performance of ego-centric representations on ego-centric videos.
We show that the model can act as a drop-in replacement for an ego-awareness video model to improve performance through visual-text grounding.
arXiv Detail & Related papers (2023-08-15T17:58:11Z) - Intra- & Extra-Source Exemplar-Based Style Synthesis for Improved Domain
Generalization [21.591831983223997]
We propose an exemplar-based style synthesis pipeline to improve domain generalization in semantic segmentation.
Our method is based on a novel masked noise encoder for StyleGAN2 inversion.
We achieve up to $12.4%$ mIoU improvements on driving-scene semantic segmentation under different types of data shifts.
arXiv Detail & Related papers (2023-07-02T19:56:43Z) - Unleashing Text-to-Image Diffusion Models for Visual Perception [84.41514649568094]
VPD (Visual Perception with a pre-trained diffusion model) is a new framework that exploits the semantic information of a pre-trained text-to-image diffusion model in visual perception tasks.
We show that VPD can be faster adapted to downstream visual perception tasks using the proposed VPD.
arXiv Detail & Related papers (2023-03-03T18:59:47Z) - eDiffi: Text-to-Image Diffusion Models with an Ensemble of Expert
Denoisers [87.52504764677226]
Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis.
We train an ensemble of text-to-image diffusion models specialized for different stages synthesis.
Our ensemble of diffusion models, called eDiffi, results in improved text alignment while maintaining the same inference cost.
arXiv Detail & Related papers (2022-11-02T17:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.