SimLVSeg: Simplifying Left Ventricular Segmentation in 2D+Time Echocardiograms with Self- and Weakly-Supervised Learning
- URL: http://arxiv.org/abs/2310.00454v3
- Date: Tue, 26 Mar 2024 15:41:17 GMT
- Title: SimLVSeg: Simplifying Left Ventricular Segmentation in 2D+Time Echocardiograms with Self- and Weakly-Supervised Learning
- Authors: Fadillah Maani, Asim Ukaye, Nada Saadi, Numan Saeed, Mohammad Yaqub,
- Abstract summary: We develop SimLVSeg, a video-based network for consistent left ventricular (LV) segmentation from sparsely annotated echocardiogram videos.
SimLVSeg consists of self-supervised pre-training with temporal masking, followed by weakly supervised learning tailored for LV segmentation from sparse annotations.
We demonstrate how SimLVSeg outperforms the state-of-the-art solutions by achieving a 93.32% dice score on the largest 2D+time echocardiography dataset.
- Score: 0.8672882547905405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Echocardiography has become an indispensable clinical imaging modality for general heart health assessment. From calculating biomarkers such as ejection fraction to the probability of a patient's heart failure, accurate segmentation of the heart structures allows doctors to assess the heart's condition and devise treatments with greater precision and accuracy. However, achieving accurate and reliable left ventricle segmentation is time-consuming and challenging due to different reasons. Hence, clinicians often rely on segmenting the left ventricular (LV) in two specific echocardiogram frames to make a diagnosis. This limited coverage in manual LV segmentation poses a challenge for developing automatic LV segmentation with high temporal consistency, as the resulting dataset is typically annotated sparsely. In response to this challenge, this work introduces SimLVSeg, a novel paradigm that enables video-based networks for consistent LV segmentation from sparsely annotated echocardiogram videos. SimLVSeg consists of self-supervised pre-training with temporal masking, followed by weakly supervised learning tailored for LV segmentation from sparse annotations. We demonstrate how SimLVSeg outperforms the state-of-the-art solutions by achieving a 93.32% (95%CI 93.21-93.43%) dice score on the largest 2D+time echocardiography dataset (EchoNet-Dynamic) while being more efficient. SimLVSeg is compatible with two types of video segmentation networks: 2D super image and 3D segmentation. To show the effectiveness of our approach, we provide extensive ablation studies, including pre-training settings and various deep learning backbones. We further conduct an out-of-distribution test to showcase SimLVSeg's generalizability on unseen distribution (CAMUS dataset). The code is publicly available at https://github.com/fadamsyah/SimLVSeg.
Related papers
- Lost in Tracking: Uncertainty-guided Cardiac Cine MRI Segmentation at Right Ventricle Base [6.124743898202368]
We propose to address the currently unsolved issues in CMR segmentation, specifically at the RV base.
We propose a novel dual encoder U-Net architecture that leverages temporal incoherence to inform the segmentation when interplanar motions occur.
arXiv Detail & Related papers (2024-10-04T11:14:31Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
This paper introduces a lightweight end-to-end Cardiac Ultrasound frame-to-volume Registration network, termed CU-Reg.
We use epicardium prompt-guided anatomical clues to reinforce the interaction of 2D sparse and 3D dense features, followed by a voxel-wise local-global aggregation of enhanced features.
arXiv Detail & Related papers (2024-06-20T17:47:30Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
Existing video-based methods do not pay much attention to the left ventricular region, nor the left ventricular changes caused by motion.
We propose a semi-supervised auxiliary learning paradigm with a left ventricular segmentation task, which contributes to the representation learning for the left ventricular region.
Our approach achieves state-of-the-art performance on the Stanford dataset with an improvement of 0.22 MAE, 0.26 RMSE, and 1.9% $R2$.
arXiv Detail & Related papers (2023-10-09T05:57:01Z) - Echocardiography Segmentation Using Neural ODE-based Diffeomorphic
Registration Field [0.0]
We present a novel method for diffevolution image registration using neural ordinary differential equations (Neural ODE)
The proposed method, Echo-ODE, introduces several key improvements compared to the previous state-of-the-art.
The results show that our method surpasses the previous state-of-the-art in multiple aspects.
arXiv Detail & Related papers (2023-06-16T08:37:27Z) - Three-Dimensional Segmentation of the Left Ventricle in Late Gadolinium
Enhanced MR Images of Chronic Infarction Combining Long- and Short-Axis
Information [5.947543669357994]
We present a comprehensive framework for automatic 3D segmentation of the LV in LGE CMR images.
We propose a novel parametric model of the LV for consistent myocardial edge points detection.
We have evaluated the proposed framework with 21 sets of real patient and 4 sets of simulated phantom data.
arXiv Detail & Related papers (2022-05-21T09:47:50Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
We present a three-stage process for analysing Holter recordings with robustness to noisy signal.
First stage is a segmentation neural network (NN) with gradientdecoder architecture which detects positions of heartbeats.
Second stage is a classification NN which will classify heartbeats as wide or narrow.
Third stage is a boosting decision trees (GBDT) on top of NN features that incorporates patient-wise features.
arXiv Detail & Related papers (2020-11-17T16:15:49Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
We propose a novel memory-efficient Convolutional Neural Network (CNN) architecture as a modification of both CondenseNet and DenseNet.
Our experiments show that the proposed architecture runs on the Automated Cardiac Diagnosis Challenge dataset.
arXiv Detail & Related papers (2020-04-05T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.