ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video
- URL: http://arxiv.org/abs/2310.01324v2
- Date: Thu, 11 Jul 2024 14:53:59 GMT
- Title: ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video
- Authors: Xinhao Li, Yuhan Zhu, Limin Wang,
- Abstract summary: Adapting image models to the video domain has emerged as an efficient paradigm for solving video recognition tasks.
Recent research is shifting its focus toward parameter-efficient image-to-video adaptation.
We present a new adaptation paradigm (ZeroI2V) to transfer the image transformers to video recognition tasks.
- Score: 15.952896909797728
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adapting image models to the video domain has emerged as an efficient paradigm for solving video recognition tasks. Due to the huge number of parameters and effective transferability of image models, performing full fine-tuning is less efficient and even unnecessary. Thus, recent research is shifting its focus toward parameter-efficient image-to-video adaptation. However, these adaptation strategies inevitably introduce extra computational costs to deal with the domain gap and temporal modeling in videos. In this paper, we present a new adaptation paradigm (ZeroI2V) to transfer the image transformers to video recognition tasks (i.e., introduce zero extra cost to the original models during inference). To achieve this goal, we present two core designs. First, to capture the dynamics in videos and reduce the difficulty of image-to-video adaptation, we exploit the flexibility of self-attention and introduce spatial-temporal dual-headed attention (STDHA). This approach efficiently endows the image transformers with temporal modeling capability at zero extra parameters and computation. Second, to handle the domain gap between images and videos, we propose a linear adaption strategy that utilizes lightweight densely placed linear adapters to fully transfer the frozen image models to video recognition. Thanks to the customized linear design, all newly added adapters could be easily merged with the original modules through structural reparameterization after training, enabling zero extra cost during inference. Extensive experiments on representative fully-supervised and few-shot video recognition benchmarks showcase that ZeroI2V can match or even outperform previous state-of-the-art methods while enjoying superior parameter and inference efficiency.
Related papers
- FE-Adapter: Adapting Image-based Emotion Classifiers to Videos [21.294212686294568]
We present the Facial-Emotion Adapter (FE-Adapter), designed for efficient fine-tuning in video tasks.
FE-Adapter can match or even surpass existing fine-tuning and video emotion models in both performance and efficiency.
arXiv Detail & Related papers (2024-08-05T12:27:28Z) - Rethinking Image-to-Video Adaptation: An Object-centric Perspective [61.833533295978484]
We propose a novel and efficient image-to-video adaptation strategy from the object-centric perspective.
Inspired by human perception, we integrate a proxy task of object discovery into image-to-video transfer learning.
arXiv Detail & Related papers (2024-07-09T13:58:10Z) - I2V-Adapter: A General Image-to-Video Adapter for Diffusion Models [80.32562822058924]
Text-guided image-to-video (I2V) generation aims to generate a coherent video that preserves the identity of the input image.
I2V-Adapter adeptly propagates the unnoised input image to subsequent noised frames through a cross-frame attention mechanism.
Our experimental results demonstrate that I2V-Adapter is capable of producing high-quality videos.
arXiv Detail & Related papers (2023-12-27T19:11:50Z) - CageViT: Convolutional Activation Guided Efficient Vision Transformer [90.69578999760206]
This paper presents an efficient vision Transformer, called CageViT, that is guided by convolutional activation to reduce computation.
Our CageViT, unlike current Transformers, utilizes a new encoder to handle the rearranged tokens.
Experimental results demonstrate that the proposed CageViT outperforms the most recent state-of-the-art backbones by a large margin in terms of efficiency.
arXiv Detail & Related papers (2023-05-17T03:19:18Z) - Dual-path Adaptation from Image to Video Transformers [62.056751480114784]
We efficiently transfer the surpassing representation power of the vision foundation models, such as ViT and Swin, for video understanding with only a few trainable parameters.
We propose a novel DualPath adaptation separated into spatial and temporal adaptation paths, where a lightweight bottleneck adapter is employed in each transformer block.
arXiv Detail & Related papers (2023-03-17T09:37:07Z) - AIM: Adapting Image Models for Efficient Video Action Recognition [22.805026175928997]
We propose a method to Adapt pre-trained Image Models (AIM) for efficient video understanding.
By freezing the pre-trained video model and adding a few lightweight Adapters, we introduce spatial adaptation, temporal adaptation and joint adaptation.
We show that our proposed AIM can achieve competitive or even better performance than prior arts with substantially fewer tunable parameters.
arXiv Detail & Related papers (2023-02-06T18:59:17Z) - Parameter-Efficient Image-to-Video Transfer Learning [66.82811235484607]
Large pre-trained models for various downstream tasks of interest have recently emerged with promising performance.
Due to the ever-growing model size, the standard full fine-tuning based task adaptation strategy becomes costly in terms of model training and storage.
We propose a new Spatio-Adapter for parameter-efficient fine-tuning per video task.
arXiv Detail & Related papers (2022-06-27T18:02:29Z) - VideoLightFormer: Lightweight Action Recognition using Transformers [8.871042314510788]
We propose a novel, lightweight action recognition architecture, VideoLightFormer.
In a factorized fashion, we carefully extend the 2D convolutional Temporal Network with transformers.
We evaluate VideoLightFormer in a high-efficiency setting on the temporally-demanding EPIC-KITCHENS-100 and Something-SV-V-Something2 datasets.
arXiv Detail & Related papers (2021-07-01T13:55:52Z) - Long-Short Temporal Contrastive Learning of Video Transformers [62.71874976426988]
Self-supervised pretraining of video transformers on video-only datasets can lead to action recognition results on par or better than those obtained with supervised pretraining on large-scale image datasets.
Our approach, named Long-Short Temporal Contrastive Learning, enables video transformers to learn an effective clip-level representation by predicting temporal context captured from a longer temporal extent.
arXiv Detail & Related papers (2021-06-17T02:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.