Probing the Multi-turn Planning Capabilities of LLMs via 20 Question
Games
- URL: http://arxiv.org/abs/2310.01468v3
- Date: Tue, 20 Feb 2024 21:24:43 GMT
- Title: Probing the Multi-turn Planning Capabilities of LLMs via 20 Question
Games
- Authors: Yizhe Zhang, Jiarui Lu, Navdeep Jaitly
- Abstract summary: Large language models (LLMs) are effective at answering questions that are clearly asked.
When faced with ambiguous queries they can act unpredictably and produce incorrect outputs.
This underscores the need for the development of intelligent agents capable of asking clarification questions to resolve ambiguities effectively.
- Score: 14.063311955315077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are effective at answering questions that are
clearly asked. However, when faced with ambiguous queries they can act
unpredictably and produce incorrect outputs. This underscores the need for the
development of intelligent agents capable of asking clarification questions to
resolve ambiguities effectively. This capability requires complex
understanding, state tracking, reasoning and planning over multiple
conversational turns. However, directly measuring this can be challenging. In
this paper, we offer a surrogate problem which assesses an LLMs's capability to
deduce an entity unknown to itself, but revealed to a judge, by asking the
judge a series of queries. This \textit{entity-deducing game} can serve as an
evaluation framework to probe the conversational reasoning and planning
capabilities of language models. We systematically evaluate various LLMs and
discover significant differences in their performance on this task. We find
that strong LLMs like GPT-4 outperform human players by a large margin. We
further employ Behavior Cloning (BC) to examine whether a weaker model is
capable of imitating a stronger model and generalizing to data or domains,
using only the demonstrations from a stronger model. We finally propose to use
Reinforcement Learning to enhance reasoning and planning capacity of Vicuna
models through episodes of game playing, which lead to significant performance
improvement. We hope that this problem offers insights into how autonomous
agents could be trained to behave more intelligently in ambiguous
circumstances.
Related papers
- Reasoning with Large Language Models, a Survey [2.831296564800826]
This paper reviews the rapidly expanding field of prompt-based reasoning with LLMs.
Our taxonomy identifies different ways to generate, evaluate, and control multi-step reasoning.
We find that self-improvement, self-reflection, and some meta abilities of the reasoning processes are possible through the judicious use of prompts.
arXiv Detail & Related papers (2024-07-16T08:49:35Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
Large language models (LLMs) have rapidly improved text embeddings for a growing array of natural-language processing tasks.
We introduce question-answering embeddings (QA-Emb), embeddings where each feature represents an answer to a yes/no question asked to an LLM.
We use QA-Emb to flexibly generate interpretable models for predicting fMRI voxel responses to language stimuli.
arXiv Detail & Related papers (2024-05-26T22:30:29Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
We present textscPuzzleBen, a weakly supervised benchmark that comprises 25,147 complex questions, answers, and human-generated rationales.
A unique aspect of our dataset is the inclusion of 10,000 unannotated questions, enabling us to explore utilizing fewer supersized data to boost LLMs' inference capabilities.
arXiv Detail & Related papers (2024-05-07T07:39:15Z) - You don't need a personality test to know these models are unreliable: Assessing the Reliability of Large Language Models on Psychometric Instruments [37.03210795084276]
We examine whether the current format of prompting Large Language Models elicits responses in a consistent and robust manner.
Our experiments on 17 different LLMs reveal that even simple perturbations significantly downgrade a model's question-answering ability.
Our results suggest that the currently widespread practice of prompting is insufficient to accurately and reliably capture model perceptions.
arXiv Detail & Related papers (2023-11-16T09:50:53Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing.
As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework.
This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - How FaR Are Large Language Models From Agents with Theory-of-Mind? [69.41586417697732]
We propose a new evaluation paradigm for large language models (LLMs): Thinking for Doing (T4D)
T4D requires models to connect inferences about others' mental states to actions in social scenarios.
We introduce a zero-shot prompting framework, Foresee and Reflect (FaR), which provides a reasoning structure that encourages LLMs to anticipate future challenges.
arXiv Detail & Related papers (2023-10-04T06:47:58Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.