RF-ULM: Ultrasound Localization Microscopy Learned from Radio-Frequency Wavefronts
- URL: http://arxiv.org/abs/2310.01545v4
- Date: Fri, 5 Apr 2024 22:17:46 GMT
- Title: RF-ULM: Ultrasound Localization Microscopy Learned from Radio-Frequency Wavefronts
- Authors: Christopher Hahne, Georges Chabouh, Arthur Chavignon, Olivier Couture, Raphael Sznitman,
- Abstract summary: Delay-and-sum beamforming leads to irreversible reduction of Radio-Frequency (RF) channel data.
rich contextual information embedded within RF wavefronts offers great promise for guiding Deep Neural Networks (DNNs) in challenging localization scenarios.
We propose to directly localize scatterers in RF channel data using learned feature channel shuffling, non-maximum suppression, and a semi-global convolutional block.
- Score: 7.652037892439504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Ultrasound Localization Microscopy (ULM), achieving high-resolution images relies on the precise localization of contrast agent particles across a series of beamformed frames. However, our study uncovers an enormous potential: The process of delay-and-sum beamforming leads to an irreversible reduction of Radio-Frequency (RF) channel data, while its implications for localization remain largely unexplored. The rich contextual information embedded within RF wavefronts, including their hyperbolic shape and phase, offers great promise for guiding Deep Neural Networks (DNNs) in challenging localization scenarios. To fully exploit this data, we propose to directly localize scatterers in RF channel data. Our approach involves a custom super-resolution DNN using learned feature channel shuffling, non-maximum suppression, and a semi-global convolutional block for reliable and accurate wavefront localization. Additionally, we introduce a geometric point transformation that facilitates seamless mapping to the B-mode coordinate space. To understand the impact of beamforming on ULM, we validate the effectiveness of our method by conducting an extensive comparison with State-Of-The-Art (SOTA) techniques. We present the inaugural in vivo results from a wavefront-localizing DNN, highlighting its real-world practicality. Our findings show that RF-ULM bridges the domain shift between synthetic and real datasets, offering a considerable advantage in terms of precision and complexity. To enable the broader research community to benefit from our findings, our code and the associated SOTA methods are made available at https://github.com/hahnec/rf-ulm.
Related papers
- Inversion-DeepONet: A Novel DeepONet-Based Network with Encoder-Decoder for Full Waveform Inversion [28.406887976413845]
We propose a novel deep operator network (DeepONet) architecture Inversion-DeepONet for full waveform inversion (FWI)
We utilize convolutional neural network (CNN) to extract the features from seismic data in branch net.
We confirm the superior performance on accuracy and generalization ability of our network, compared with existing data-driven FWI methods.
arXiv Detail & Related papers (2024-08-15T08:15:06Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Learning Super-Resolution Ultrasound Localization Microscopy from
Radio-Frequency Data [8.312810360920107]
We propose to feed Radio-Frequency (RF) data into a super-resolution network while bypassing DAS beamforming and its limitations.
Results from our RF-trained network suggest that excluding DAS beamforming offers a great potential to optimize on the ULM resolution performance.
arXiv Detail & Related papers (2023-11-07T15:47:38Z) - A Deep Learning Approach for Generating Soft Range Information from RF
Data [29.827191184889898]
Soft range information (SRI) offers a promising alternative for highly accurate localization.
We propose a deep learning approach to generate accurate SRI from RF measurements.
arXiv Detail & Related papers (2023-05-23T10:33:52Z) - Microseismic source imaging using physics-informed neural networks with
hard constraints [4.07926531936425]
We propose a direct microseismic imaging framework based on physics-informed neural networks (PINNs)
We use the PINNs to represent a multi-frequency wavefield and then apply inverse Fourier transform to extract the source image.
We further apply our method to hydraulic fracturing monitoring field data, and demonstrate that our method can correctly image the source with fewer artifacts.
arXiv Detail & Related papers (2023-04-09T21:10:39Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
We show that accurately simulating the low-frequency components of Room Impulse Responses (RIRs) is important to achieving good dereverberation.
We demonstrate that speech dereverberation models trained on hybrid synthetic RIRs outperform models trained on RIRs generated by prior geometric ray tracing methods.
arXiv Detail & Related papers (2022-12-10T20:15:23Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.