Memory-efficient particle filter recurrent neural network for object
localization
- URL: http://arxiv.org/abs/2310.01595v1
- Date: Mon, 2 Oct 2023 19:41:19 GMT
- Title: Memory-efficient particle filter recurrent neural network for object
localization
- Authors: Roman Korkin, Ivan Oseledets, Aleksandr Katrutsa
- Abstract summary: This study proposes a novel memory-efficient recurrent neural network (RNN) architecture specified to solve the object localization problem.
We take the idea of the classical particle filter and combine it with GRU RNN architecture.
In our experiments, the mePFRNN model provides more precise localization than the considered competitors and requires fewer trained parameters.
- Score: 53.68402839500528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a novel memory-efficient recurrent neural network (RNN)
architecture specified to solve the object localization problem. This problem
is to recover the object states along with its movement in a noisy environment.
We take the idea of the classical particle filter and combine it with GRU RNN
architecture. The key feature of the resulting memory-efficient particle filter
RNN model (mePFRNN) is that it requires the same number of parameters to
process environments of different sizes. Thus, the proposed mePFRNN
architecture consumes less memory to store parameters compared to the
previously proposed PFRNN model. To demonstrate the performance of our model,
we test it on symmetric and noisy environments that are incredibly challenging
for filtering algorithms. In our experiments, the mePFRNN model provides more
precise localization than the considered competitors and requires fewer trained
parameters.
Related papers
- RL-Pruner: Structured Pruning Using Reinforcement Learning for CNN Compression and Acceleration [0.0]
We propose RL-Pruner, which uses reinforcement learning to learn the optimal pruning distribution.
RL-Pruner can automatically extract dependencies between filters in the input model and perform pruning, without requiring model-specific pruning implementations.
arXiv Detail & Related papers (2024-11-10T13:35:10Z) - MPruner: Optimizing Neural Network Size with CKA-Based Mutual Information Pruning [7.262751938473306]
Pruning is a well-established technique that reduces the size of neural networks while mathematically guaranteeing accuracy preservation.
We develop a new pruning algorithm, MPruner, that leverages mutual information through vector similarity.
MPruner achieved up to a 50% reduction in parameters and memory usage for CNN and transformer-based models, with minimal to no loss in accuracy.
arXiv Detail & Related papers (2024-08-24T05:54:47Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - Filter-enhanced MLP is All You Need for Sequential Recommendation [89.0974365344997]
In online platforms, logged user behavior data is inevitable to contain noise.
We borrow the idea of filtering algorithms from signal processing that attenuates the noise in the frequency domain.
We propose textbfFMLP-Rec, an all-MLP model with learnable filters for sequential recommendation task.
arXiv Detail & Related papers (2022-02-28T05:49:35Z) - Batch Normalization Tells You Which Filter is Important [49.903610684578716]
We propose a simple yet effective filter pruning method by evaluating the importance of each filter based on the BN parameters of pre-trained CNNs.
The experimental results on CIFAR-10 and ImageNet demonstrate that the proposed method can achieve outstanding performance.
arXiv Detail & Related papers (2021-12-02T12:04:59Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - Learning Sparse Filters in Deep Convolutional Neural Networks with a
l1/l2 Pseudo-Norm [5.3791844634527495]
Deep neural networks (DNNs) have proven to be efficient for numerous tasks, but come at a high memory and computation cost.
Recent research has shown that their structure can be more compact without compromising their performance.
We present a sparsity-inducing regularization term based on the ratio l1/l2 pseudo-norm defined on the filter coefficients.
arXiv Detail & Related papers (2020-07-20T11:56:12Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
We propose a pure spiking neural network (SNN) based computational model for precise sound localization in the noisy real-world environment.
We implement this algorithm in a real-time robotic system with a microphone array.
The experiment results show a mean error azimuth of 13 degrees, which surpasses the accuracy of the other biologically plausible neuromorphic approach for sound source localization.
arXiv Detail & Related papers (2020-07-07T08:22:56Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.