Adaptive Visual Scene Understanding: Incremental Scene Graph Generation
- URL: http://arxiv.org/abs/2310.01636v2
- Date: Wed, 11 Oct 2023 02:02:48 GMT
- Title: Adaptive Visual Scene Understanding: Incremental Scene Graph Generation
- Authors: Naitik Khandelwal, Xiao Liu and Mengmi Zhang
- Abstract summary: Scene graph generation (SGG) involves analyzing images to extract meaningful information about objects and their relationships.
To address the lack of continual learning methodologies in SGG, we introduce the comprehensive Continual ScenE Graph Generation dataset.
- Score: 20.255178648494756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scene graph generation (SGG) involves analyzing images to extract meaningful
information about objects and their relationships. Given the dynamic nature of
the visual world, it becomes crucial for AI systems to detect new objects and
establish their new relationships with existing objects. To address the lack of
continual learning methodologies in SGG, we introduce the comprehensive
Continual ScenE Graph Generation (CSEGG) dataset along with 3 learning
scenarios and 8 evaluation metrics. Our research investigates the continual
learning performances of existing SGG methods on the retention of previous
object entities and relationships as they learn new ones. Moreover, we also
explore how continual object detection enhances generalization in classifying
known relationships on unknown objects. We conduct extensive experiments
benchmarking and analyzing the classical two-stage SGG methods and the most
recent transformer-based SGG methods in continual learning settings, and gain
valuable insights into the CSEGG problem. We invite the research community to
explore this emerging field of study.
Related papers
- Open World Scene Graph Generation using Vision Language Models [7.024230124913843]
Scene-Graph Generation (SGG) seeks to recognize objects in an image and distill their salient pairwise relationships.<n>We introduce Open-World SGG, a training-free, efficient, model-agnostic framework that taps directly into the pretrained knowledge of Vision Language Models (VLMs)<n>Our method combines multimodal prompting, embedding alignment, and a lightweight pair-refinement strategy, enabling inference over unseen object vocabularies and relation sets.
arXiv Detail & Related papers (2025-06-09T19:59:05Z) - Scene Graph Generation Strategy with Co-occurrence Knowledge and Learnable Term Frequency [3.351553095054309]
Scene graph generation (SGG) represents the relationships between objects in an image as a graph structure.
Previous studies have failed to reflect the co-occurrence of objects during SGG generation.
We propose CooK, which reflects the Co-occurrence Knowledge between objects, and the learnable term frequency-inverse document frequency.
arXiv Detail & Related papers (2024-05-21T09:56:48Z) - Expanding Scene Graph Boundaries: Fully Open-vocabulary Scene Graph Generation via Visual-Concept Alignment and Retention [69.36723767339001]
Scene Graph Generation (SGG) offers a structured representation critical in many computer vision applications.
We propose a unified framework named OvSGTR towards fully open vocabulary SGG from a holistic view.
For the more challenging settings of relation-involved open vocabulary SGG, the proposed approach integrates relation-aware pretraining.
arXiv Detail & Related papers (2023-11-18T06:49:17Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
We propose a novel DynSGG model based on multi-task learning, DynSGG-MTL, which introduces the local interaction information and global human-action interaction information.
Long-temporal human actions supervise the model to generate multiple scene graphs that conform to the global constraints and avoid the model being unable to learn the tail predicates.
arXiv Detail & Related papers (2023-08-10T01:24:25Z) - Unbiased Heterogeneous Scene Graph Generation with Relation-aware
Message Passing Neural Network [9.779600950401315]
We propose an unbiased heterogeneous scene graph generation (HetSGG) framework that captures relation-aware context.
We devise a novel message passing layer, called relation-aware message passing neural network (RMP), that aggregates the contextual information of an image.
arXiv Detail & Related papers (2022-12-01T11:25:36Z) - Towards Open-vocabulary Scene Graph Generation with Prompt-based
Finetuning [84.39787427288525]
Scene graph generation (SGG) is a fundamental task aimed at detecting visual relations between objects in an image.
We introduce open-vocabulary scene graph generation, a novel, realistic and challenging setting in which a model is trained on a set of base object classes.
Our method can support inference over completely unseen object classes, which existing methods are incapable of handling.
arXiv Detail & Related papers (2022-08-17T09:05:38Z) - Scene Graph Generation: A Comprehensive Survey [35.80909746226258]
Scene graph has been the focus of research because of its powerful semantic representation and applications to scene understanding.
Scene Graph Generation (SGG) refers to the task of automatically mapping an image into a semantic structural scene graph.
We review 138 representative works that cover different input modalities, and systematically summarize existing methods of image-based SGG.
arXiv Detail & Related papers (2022-01-03T00:55:33Z) - Not All Relations are Equal: Mining Informative Labels for Scene Graph
Generation [48.21846438269506]
Scene graph generation (SGG) aims to capture a wide variety of interactions between pairs of objects.
Existing SGG methods fail to acquire complex reasoning about visual and textual correlations due to various biases in training data.
We propose a novel framework for SGG training that exploits relation labels based on their informativeness.
arXiv Detail & Related papers (2021-11-26T14:34:12Z) - Semantic Compositional Learning for Low-shot Scene Graph Generation [122.51930904132685]
Many scene graph generation (SGG) models solely use the limited annotated relation triples for training.
We propose a novel semantic compositional learning strategy that makes it possible to construct additional, realistic relation triples.
For three recent SGG models, adding our strategy improves their performance by close to 50%, and all of them substantially exceed the current state-of-the-art.
arXiv Detail & Related papers (2021-08-19T10:13:55Z) - Unconditional Scene Graph Generation [72.53624470737712]
We develop a deep auto-regressive model called SceneGraphGen which can learn the probability distribution over labelled and directed graphs.
We show that the scene graphs generated by SceneGraphGen are diverse and follow the semantic patterns of real-world scenes.
arXiv Detail & Related papers (2021-08-12T17:57:16Z) - Zero-Shot Scene Graph Relation Prediction through Commonsense Knowledge
Integration [9.203403318435486]
We propose CommOnsense-integrAted sCenegrapHrElation pRediction (COACHER), a framework to integrate commonsense knowledge for scene graph generation (SGG)
Specifically, we develop novel graph mining pipelines to model the neighborhoods and paths around entities in an external commonsense knowledge graph.
arXiv Detail & Related papers (2021-07-11T16:22:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.