Generative Autoencoding of Dropout Patterns
- URL: http://arxiv.org/abs/2310.01712v2
- Date: Fri, 28 Jun 2024 03:53:56 GMT
- Title: Generative Autoencoding of Dropout Patterns
- Authors: Shunta Maeda,
- Abstract summary: We propose a generative model termed Deciphering Autoencoders.
We assign a unique random dropout pattern to each data point in the training dataset.
We then train an autoencoder to reconstruct the corresponding data point using this pattern as information to be encoded.
- Score: 11.965844936801801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a generative model termed Deciphering Autoencoders. In this model, we assign a unique random dropout pattern to each data point in the training dataset and then train an autoencoder to reconstruct the corresponding data point using this pattern as information to be encoded. Even if a completely random dropout pattern is assigned to each data point regardless of their similarities, a sufficiently large encoder can smoothly map them to a low-dimensional latent space to reconstruct individual training data points. During inference, using a dropout pattern different from those used during training allows the model to function as a generator. Since the training of Deciphering Autoencoders relies solely on reconstruction error, it offers more stable training compared to other generative models. Despite their simplicity, Deciphering Autoencoders show sampling quality comparable to DCGAN on the CIFAR-10 dataset.
Related papers
- Are We Using Autoencoders in a Wrong Way? [3.110260251019273]
Autoencoders are used for dimensionality reduction, anomaly detection and feature extraction.
We revisited the standard training for the undercomplete Autoencoder modifying the shape of the latent space.
We also explored the behaviour of the latent space in the case of reconstruction of a random sample from the whole dataset.
arXiv Detail & Related papers (2023-09-04T11:22:43Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
In generative modeling, numerous successful approaches leverage a low-dimensional latent space, e.g., Stable Diffusion.
In this study, we aim to shed light on this under-explored topic by rethinking the latent space from the perspective of model complexity.
arXiv Detail & Related papers (2023-07-17T07:12:29Z) - Variational Diffusion Auto-encoder: Latent Space Extraction from
Pre-trained Diffusion Models [0.0]
Variational Auto-Encoders (VAEs) face challenges with the quality of generated images, often presenting noticeable blurriness.
This issue stems from the unrealistic assumption that approximates the conditional data distribution, $p(textbfx | textbfz)$, as an isotropic Gaussian.
We illustrate how one can extract a latent space from a pre-existing diffusion model by optimizing an encoder to maximize the marginal data log-likelihood.
arXiv Detail & Related papers (2023-04-24T14:44:47Z) - PEOPL: Characterizing Privately Encoded Open Datasets with Public Labels [59.66777287810985]
We introduce information-theoretic scores for privacy and utility, which quantify the average performance of an unfaithful user.
We then theoretically characterize primitives in building families of encoding schemes that motivate the use of random deep neural networks.
arXiv Detail & Related papers (2023-03-31T18:03:53Z) - Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs [16.968490007064872]
Applying variational autoencoders (VAEs) to sequential data offers a method for controlled sequence generation, manipulation, and structured representation learning.
We show theoretically that this removes pointwise mutual information provided by the decoder input, which is compensated for by utilizing the latent space.
Compared to uniform dropout on standard text benchmark datasets, our targeted approach increases both sequence performance and the information captured in the latent space.
arXiv Detail & Related papers (2022-09-26T11:21:19Z) - String-based Molecule Generation via Multi-decoder VAE [56.465033997245776]
We investigate the problem of string-based molecular generation via variational autoencoders (VAEs)
We propose a simple, yet effective idea to improve the performance of VAE for the task.
In our experiments, the proposed VAE model particularly performs well for generating a sample from out-of-domain distribution.
arXiv Detail & Related papers (2022-08-23T03:56:30Z) - Anytime Sampling for Autoregressive Models via Ordered Autoencoding [88.01906682843618]
Autoregressive models are widely used for tasks such as image and audio generation.
The sampling process of these models does not allow interruptions and cannot adapt to real-time computational resources.
We propose a new family of autoregressive models that enables anytime sampling.
arXiv Detail & Related papers (2021-02-23T05:13:16Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Batch norm with entropic regularization turns deterministic autoencoders
into generative models [14.65554816300632]
The variational autoencoder is a well defined deep generative model.
We show in this work that utilizing batch normalization as a source for non-determinism suffices to turn deterministic autoencoders into generative models.
arXiv Detail & Related papers (2020-02-25T02:42:18Z) - Learning Autoencoders with Relational Regularization [89.53065887608088]
A new framework is proposed for learning autoencoders of data distributions.
We minimize the discrepancy between the model and target distributions, with a emphrelational regularization
We implement the framework with two scalable algorithms, making it applicable for both probabilistic and deterministic autoencoders.
arXiv Detail & Related papers (2020-02-07T17:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.