Discrete, compositional, and symbolic representations through attractor dynamics
- URL: http://arxiv.org/abs/2310.01807v2
- Date: Thu, 26 Sep 2024 14:21:10 GMT
- Title: Discrete, compositional, and symbolic representations through attractor dynamics
- Authors: Andrew Nam, Eric Elmoznino, Nikolay Malkin, James McClelland, Yoshua Bengio, Guillaume Lajoie,
- Abstract summary: We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
- Score: 51.20712945239422
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Symbolic systems are powerful frameworks for modeling cognitive processes as they encapsulate the rules and relationships fundamental to many aspects of human reasoning and behavior. Central to these models are systematicity, compositionality, and productivity, making them invaluable in both cognitive science and artificial intelligence. However, certain limitations remain. For instance, the integration of structured symbolic processes and latent sub-symbolic processes has been implemented at the computational level through fiat methods such as quantization or softmax sampling, which assume, rather than derive, the operations underpinning discretization and symbolicization. In this work, we introduce a novel neural stochastic dynamical systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT). Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives. Moreover, like PLoT, our model learns to sample a diverse distribution of attractor states that reflect the mutual information between the input data and the symbolic encodings. This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuro-plausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations.
Related papers
- LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Models of symbol emergence in communication: a conceptual review and a
guide for avoiding local minima [0.0]
Computational simulations are a popular method for testing hypotheses about the emergence of communication.
We identify the assumptions and explanatory targets of several most representative models and summarise the known results.
In line with this perspective, we sketch the road towards modelling the emergence of meaningful symbolic communication.
arXiv Detail & Related papers (2023-03-08T12:53:03Z) - Meta-brain Models: biologically-inspired cognitive agents [0.0]
We propose a computational approach we call meta-brain models.
We will propose combinations of layers composed using specialized types of models.
We will conclude by proposing next steps in the development of this flexible and open-source approach.
arXiv Detail & Related papers (2021-08-31T05:20:53Z) - pix2rule: End-to-end Neuro-symbolic Rule Learning [84.76439511271711]
This paper presents a complete neuro-symbolic method for processing images into objects, learning relations and logical rules.
The main contribution is a differentiable layer in a deep learning architecture from which symbolic relations and rules can be extracted.
We demonstrate that our model scales beyond state-of-the-art symbolic learners and outperforms deep relational neural network architectures.
arXiv Detail & Related papers (2021-06-14T15:19:06Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z) - Controlling Synthetic Characters in Simulations: A Case for Cognitive
Architectures and Sigma [0.0]
Simulations require computational models of intelligence that generate realistic and credible behavior for the participating synthetic characters.
Sigma is a cognitive architecture and system that strives to combine what has been learned from four decades of independent work on symbolic cognitive architectures, probabilistic graphical models, and more recently neural models, under its graphical architecture hypothesis.
In this paper, we will introduce Sigma along with its diverse capabilities and then use three distinct proof-of-concept Sigma models to highlight combinations of these capabilities.
arXiv Detail & Related papers (2021-01-06T19:07:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.