Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
- URL: http://arxiv.org/abs/2310.01820v2
- Date: Sun, 17 Mar 2024 17:35:59 GMT
- Title: Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks
- Authors: Xu Zheng, Farhad Shirani, Tianchun Wang, Wei Cheng, Zhuomin Chen, Haifeng Chen, Hua Wei, Dongsheng Luo,
- Abstract summary: Graph Neural Networks (GNNs) are neural models that leverage the dependency structure in graphical data via message passing among the graph nodes.
A main challenge in studying GNN explainability is to provide fidelity measures that evaluate the performance of these explanation functions.
This paper studies this foundational challenge, spotlighting the inherent limitations of prevailing fidelity metrics.
- Score: 32.345435955298825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) are neural models that leverage the dependency structure in graphical data via message passing among the graph nodes. GNNs have emerged as pivotal architectures in analyzing graph-structured data, and their expansive application in sensitive domains requires a comprehensive understanding of their decision-making processes -- necessitating a framework for GNN explainability. An explanation function for GNNs takes a pre-trained GNN along with a graph as input, to produce a `sufficient statistic' subgraph with respect to the graph label. A main challenge in studying GNN explainability is to provide fidelity measures that evaluate the performance of these explanation functions. This paper studies this foundational challenge, spotlighting the inherent limitations of prevailing fidelity metrics, including $Fid_+$, $Fid_-$, and $Fid_\Delta$. Specifically, a formal, information-theoretic definition of explainability is introduced and it is shown that existing metrics often fail to align with this definition across various statistical scenarios. The reason is due to potential distribution shifts when subgraphs are removed in computing these fidelity measures. Subsequently, a robust class of fidelity measures are introduced, and it is shown analytically that they are resilient to distribution shift issues and are applicable in a wide range of scenarios. Extensive empirical analysis on both synthetic and real datasets are provided to illustrate that the proposed metrics are more coherent with gold standard metrics. The source code is available at https://trustai4s-lab.github.io/fidelity.
Related papers
- Improving Expressivity of GNNs with Subgraph-specific Factor Embedded
Normalization [30.86182962089487]
Graph Neural Networks (GNNs) have emerged as a powerful category of learning architecture for handling graph-structured data.
We propose a dedicated plug-and-play normalization scheme, termed as SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm)
arXiv Detail & Related papers (2023-05-31T14:37:31Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - OrphicX: A Causality-Inspired Latent Variable Model for Interpreting
Graph Neural Networks [42.539085765796976]
This paper proposes a new eXplanation framework, called OrphicX, for generating causal explanations for graph neural networks (GNNs)
We construct a distinct generative model and design an objective function that encourages the generative model to produce causal, compact, and faithful explanations.
We show that OrphicX can effectively identify the causal semantics for generating causal explanations, significantly outperforming its alternatives.
arXiv Detail & Related papers (2022-03-29T03:08:33Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Training Stable Graph Neural Networks Through Constrained Learning [116.03137405192356]
Graph Neural Networks (GNNs) rely on graph convolutions to learn features from network data.
GNNs are stable to different types of perturbations of the underlying graph, a property that they inherit from graph filters.
We propose a novel constrained learning approach by imposing a constraint on the stability condition of the GNN within a perturbation of choice.
arXiv Detail & Related papers (2021-10-07T15:54:42Z) - Towards Self-Explainable Graph Neural Network [24.18369781999988]
Graph Neural Networks (GNNs) generalize the deep neural networks to graph-structured data.
GNNs lack explainability, which limits their adoption in scenarios that demand the transparency of models.
We propose a new framework which can find $K$-nearest labeled nodes for each unlabeled node to give explainable node classification.
arXiv Detail & Related papers (2021-08-26T22:45:11Z) - Implicit Graph Neural Networks [46.0589136729616]
We propose a graph learning framework called Implicit Graph Neural Networks (IGNN)
IGNNs consistently capture long-range dependencies and outperform state-of-the-art GNN models.
arXiv Detail & Related papers (2020-09-14T06:04:55Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.