A Dual Attentive Generative Adversarial Network for Remote Sensing Image
Change Detection
- URL: http://arxiv.org/abs/2310.01876v1
- Date: Tue, 3 Oct 2023 08:26:27 GMT
- Title: A Dual Attentive Generative Adversarial Network for Remote Sensing Image
Change Detection
- Authors: Luyi Qiu and Xiaofeng Zhang and ChaoChen Gu and and ShanYing Zhu
- Abstract summary: We propose a dual attentive generative adversarial network for achieving very high-resolution remote sensing image change detection tasks.
The DAGAN framework has better performance with 85.01% mean IoU and 91.48% mean F1 score than advanced methods on the LEVIR dataset.
- Score: 6.906936669510404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing change detection between bi-temporal images receives growing
concentration from researchers. However, comparing two bi-temporal images for
detecting changes is challenging, as they demonstrate different appearances. In
this paper, we propose a dual attentive generative adversarial network for
achieving very high-resolution remote sensing image change detection tasks,
which regards the detection model as a generator and attains the optimal
weights of the detection model without increasing the parameters of the
detection model through generative-adversarial strategy, boosting the spatial
contiguity of predictions. Moreover, We design a multi-level feature extractor
for effectively fusing multi-level features, which adopts the pre-trained model
to extract multi-level features from bi-temporal images and introduces
aggregate connections to fuse them. To strengthen the identification of
multi-scale objects, we propose a multi-scale adaptive fusion module to
adaptively fuse multi-scale features through various receptive fields and
design a context refinement module to explore contextual dependencies.
Moreover, the DAGAN framework utilizes the 4-layer convolution network as a
discriminator to identify whether the synthetic image is fake or real.
Extensive experiments represent that the DAGAN framework has better performance
with 85.01% mean IoU and 91.48% mean F1 score than advanced methods on the
LEVIR dataset.
Related papers
- DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
We construct a DA-HFNet forged image dataset guided by text or image-assisted GAN and Diffusion model.
Our goal is to utilize a hierarchical progressive network to capture forged artifacts at different scales for detection and localization.
arXiv Detail & Related papers (2024-06-03T16:13:33Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - Siamese Meets Diffusion Network: SMDNet for Enhanced Change Detection in
High-Resolution RS Imagery [7.767708235606408]
We propose a new network, Siamese-U2Net Feature Differential Meets Network (SMDNet)
This network combines the Siam-U2Net Feature Differential (SU-FDE) and the denoising diffusion implicit model to improve the accuracy of image edge change detection.
Our method's combination of feature extraction and diffusion models demonstrates effectiveness in change detection in remote sensing images.
arXiv Detail & Related papers (2024-01-17T16:48:55Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
We study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods.
We present a novel forgery-aware adaptive transformer approach, namely FatFormer.
Our approach tuned on 4-class ProGAN data attains an average of 98% accuracy to unseen GANs, and surprisingly generalizes to unseen diffusion models with 95% accuracy.
arXiv Detail & Related papers (2023-12-27T17:36:32Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
Multi-modal fusion has been determined to enhance the accuracy by fusing data from multiple modalities.
We propose a novel multi-modal fusion strategy for mapping relationships between different channels at the early stage.
By addressing fusion in the early stage, as opposed to mid or late-stage methods, our method achieves competitive and even superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-10-21T00:56:11Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
We propose a novel Siamese neural network for change detection task, namely Dual-UNet.
In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels.
Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.
arXiv Detail & Related papers (2022-08-12T14:24:09Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.