Federated Conditional Stochastic Optimization
- URL: http://arxiv.org/abs/2310.02524v1
- Date: Wed, 4 Oct 2023 01:47:37 GMT
- Title: Federated Conditional Stochastic Optimization
- Authors: Xidong Wu, Jianhui Sun, Zhengmian Hu, Junyi Li, Aidong Zhang, Heng
Huang
- Abstract summary: Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
- Score: 110.513884892319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional stochastic optimization has found applications in a wide range of
machine learning tasks, such as invariant learning, AUPRC maximization, and
meta-learning. As the demand for training models with large-scale distributed
data grows in these applications, there is an increasing need for
communication-efficient distributed optimization algorithms, such as federated
learning algorithms. This paper considers the nonconvex conditional stochastic
optimization in federated learning and proposes the first federated conditional
stochastic optimization algorithm (FCSG) with a conditional stochastic gradient
estimator and a momentum-based algorithm (FCSG-M). To match the lower bound
complexity in the single-machine setting, we design an accelerated algorithm
(Acc-FCSG-M) via the variance reduction to achieve the best sample and
communication complexity. Compared with the existing optimization analysis for
MAML in FL, federated conditional stochastic optimization considers the sample
of tasks. Extensive experimental results on various tasks validate the
efficiency of these algorithms.
Related papers
- Faster Adaptive Decentralized Learning Algorithms [24.379734053137597]
We propose a class of faster distributed non decentralized algorithms (i.e. AdaMDOS and AdaMDOF) for adaptive learning and finite-sum optimization.
Some experimental results demonstrate efficiency of our algorithms.
arXiv Detail & Related papers (2024-08-19T08:05:33Z) - Quantum-Enhanced Simulation-Based Optimization for Newsvendor Problems [5.500172106704342]
We exploit the enhanced efficiency of Quantum Amplitude Estimation (QAE) compared to classical Monte Carlo simulation.
In this work, we make use of a quantum-enhanced algorithm for simulation-based optimization and apply it to solve a variant of the classical News problem known to be NP-hard.
arXiv Detail & Related papers (2024-03-26T05:14:50Z) - Faster Adaptive Momentum-Based Federated Methods for Distributed
Composition Optimization [14.579475552088692]
We propose a class of faster federated composition optimization algorithms (i.e. MFCGD and AdaMFCGD) to solve the non distributed composition problems.
In particular, our adaptive algorithm (i.e., AdaMFCGD) uses a unified adaptive matrix to flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-03T15:17:04Z) - Fast Adaptive Federated Bilevel Optimization [14.579475552088692]
We propose a novel adaptive federated bilevel optimization algorithm (i.e.,AdaFBiO) to solve the distributed bilevel optimization problems.
AdaFBiO uses the unified adaptive matrices to flexibly incorporate various adaptive learning rates to update variables in both UL and LL problems.
We provide a convergence analysis framework for our AdaFBiO algorithm, and prove it needs the sample of complexity of $tildeO(epsilon-3)$ with communication complexity of $tildeO(epsilon-2)$ to obtain an $
arXiv Detail & Related papers (2022-11-02T13:55:47Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.