Analyzing and Improving Optimal-Transport-based Adversarial Networks
- URL: http://arxiv.org/abs/2310.02611v2
- Date: Thu, 7 Mar 2024 05:13:11 GMT
- Title: Analyzing and Improving Optimal-Transport-based Adversarial Networks
- Authors: Jaemoo Choi, Jaewoong Choi, Myungjoo Kang
- Abstract summary: Optimal Transport (OT) problem aims to find a transport plan that bridges two distributions while minimizing a given cost function.
OT theory has been widely utilized in generative modeling.
Our approach achieves a FID score of 2.51 on CIFAR-10 and 5.99 on CelebA-HQ-256, outperforming unified OT-based adversarial approaches.
- Score: 9.980822222343921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal Transport (OT) problem aims to find a transport plan that bridges two
distributions while minimizing a given cost function. OT theory has been widely
utilized in generative modeling. In the beginning, OT distance has been used as
a measure for assessing the distance between data and generated distributions.
Recently, OT transport map between data and prior distributions has been
utilized as a generative model. These OT-based generative models share a
similar adversarial training objective. In this paper, we begin by unifying
these OT-based adversarial methods within a single framework. Then, we
elucidate the role of each component in training dynamics through a
comprehensive analysis of this unified framework. Moreover, we suggest a simple
but novel method that improves the previously best-performing OT-based model.
Intuitively, our approach conducts a gradual refinement of the generated
distribution, progressively aligning it with the data distribution. Our
approach achieves a FID score of 2.51 on CIFAR-10 and 5.99 on CelebA-HQ-256,
outperforming unified OT-based adversarial approaches.
Related papers
- Improving Neural Optimal Transport via Displacement Interpolation [16.474572112062535]
Optimal Transport (OT) theory investigates the cost-minimizing transport map that moves a source distribution to a target distribution.
We propose a novel method to improve stability and achieve a better approximation of the OT Map by exploiting displacement.
We demonstrate that DIOTM outperforms existing OT-based models on image-to-image translation tasks.
arXiv Detail & Related papers (2024-10-03T16:42:23Z) - Double-Bounded Optimal Transport for Advanced Clustering and
Classification [58.237576976486544]
We propose Doubly Bounded Optimal Transport (DB-OT), which assumes that the target distribution is restricted within two boundaries instead of a fixed one.
We show that our method can achieve good results with our improved inference scheme in the testing stage.
arXiv Detail & Related papers (2024-01-21T07:43:01Z) - Unifying Distributionally Robust Optimization via Optimal Transport
Theory [13.19058156672392]
This paper introduces a novel approach that unifies these methods into a single framework based on optimal transport.
Our proposed approach makes it possible for optimal adversarial distributions to simultaneously perturb likelihood and outcomes.
The paper investigates several duality results and presents tractable reformulations that enhance the practical applicability of this unified framework.
arXiv Detail & Related papers (2023-08-10T08:17:55Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Generative Modeling through the Semi-dual Formulation of Unbalanced
Optimal Transport [9.980822222343921]
We propose a novel generative model based on the semi-dual formulation of Unbalanced Optimal Transport (UOT)
Unlike OT, UOT relaxes the hard constraint on distribution matching. This approach provides better robustness against outliers, stability during training, and faster convergence.
Our model outperforms existing OT-based generative models, achieving FID scores of 2.97 on CIFAR-10 and 6.36 on CelebA-HQ-256.
arXiv Detail & Related papers (2023-05-24T06:31:05Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Learning Optimal Transport Between two Empirical Distributions with
Normalizing Flows [12.91637880428221]
We propose to leverage the flexibility of neural networks to learn an approximate optimal transport map.
We show that a particular instance of invertible neural networks, namely the normalizing flows, can be used to approximate the solution of this OT problem.
arXiv Detail & Related papers (2022-07-04T08:08:47Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Learning to Solve Routing Problems via Distributionally Robust
Optimization [14.506553345693536]
Recent deep models for solving routing problems assume a single distribution of nodes for training, which severely impairs their cross-distribution generalization ability.
We exploit group distributionally robust optimization (group DRO) to tackle this issue, where we jointly optimize the weights for different groups of distributions and the parameters for the deep model in an interleaved manner during training.
We also design a module based on convolutional neural network, which allows the deep model to learn more informative latent pattern among the nodes.
arXiv Detail & Related papers (2022-02-15T08:06:44Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.