Fast, Expressive SE$(n)$ Equivariant Networks through Weight-Sharing in Position-Orientation Space
- URL: http://arxiv.org/abs/2310.02970v3
- Date: Fri, 15 Mar 2024 09:21:33 GMT
- Title: Fast, Expressive SE$(n)$ Equivariant Networks through Weight-Sharing in Position-Orientation Space
- Authors: Erik J Bekkers, Sharvaree Vadgama, Rob D Hesselink, Putri A van der Linden, David W Romero,
- Abstract summary: We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs.
We develop an efficient equivariant group convolutional network for processing 3D point clouds.
- Score: 15.495593104596399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions $\mathbb{R}^3$, position and orientations $\mathbb{R}^3 {\times} S^2$, and the group $SE(3)$ itself. Among these, $\mathbb{R}^3 {\times} S^2$ is an optimal choice due to the ability to represent directional information, which $\mathbb{R}^3$ methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full $SE(3)$ group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - A General Framework for Robust G-Invariance in G-Equivariant Networks [5.227502964814928]
We introduce a general method for achieving robust group-invariance in group-equivariant convolutional neural networks ($G$-CNNs)
The completeness of the triple correlation endows the $G$-TC layer with strong robustness.
We demonstrate the benefits of this method on both commutative and non-commutative groups.
arXiv Detail & Related papers (2023-10-28T02:27:34Z) - Lie Group Decompositions for Equivariant Neural Networks [12.139222986297261]
We show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations.
We evaluate the robustness and out-of-distribution generalisation capability of our model on the benchmark affine-invariant classification task.
arXiv Detail & Related papers (2023-10-17T16:04:33Z) - Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and
Group Convolution [90.67482899242093]
A wide range of techniques have been proposed in recent years for designing neural networks for 3D data that are equivariant under rotation and translation of the input.
We provide an in-depth analysis of both methods and their equivalence and relate the two constructions to multiview convolutional networks.
We also derive new TFN non-linearities from our equivalence principle and test them on practical benchmark datasets.
arXiv Detail & Related papers (2022-11-29T03:42:11Z) - Unified Fourier-based Kernel and Nonlinearity Design for Equivariant
Networks on Homogeneous Spaces [52.424621227687894]
We introduce a unified framework for group equivariant networks on homogeneous spaces.
We take advantage of the sparsity of Fourier coefficients of the lifted feature fields.
We show that other methods treating features as the Fourier coefficients in the stabilizer subgroup are special cases of our activation.
arXiv Detail & Related papers (2022-06-16T17:59:01Z) - E2PN: Efficient SE(3)-Equivariant Point Network [12.520265159777255]
This paper proposes a convolution structure for learning SE(3)-equivariant features from 3D point clouds.
It can be viewed as an equivariant version of kernel point convolutions (KPConv), a widely used convolution form to process point cloud data.
arXiv Detail & Related papers (2022-06-11T02:15:46Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - Equivariant Point Network for 3D Point Cloud Analysis [17.689949017410836]
We propose an effective and practical SE(3) (3D translation and rotation) equivariant network for point cloud analysis.
First, we present SE(3) separable point convolution, a novel framework that breaks down the 6D convolution into two separable convolutional operators.
Second, we introduce an attention layer to effectively harness the expressiveness of the equivariant features.
arXiv Detail & Related papers (2021-03-25T21:57:10Z) - 3D Correspondence Grouping with Compatibility Features [51.869670613445685]
We present a simple yet effective method for 3D correspondence grouping.
The objective is to accurately classify initial correspondences obtained by matching local geometric descriptors into inliers and outliers.
We propose a novel representation for 3D correspondences, dubbed compatibility feature (CF), to describe the consistencies within inliers and inconsistencies within outliers.
arXiv Detail & Related papers (2020-07-21T02:39:48Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.