Multiple Physics Pretraining for Physical Surrogate Models
- URL: http://arxiv.org/abs/2310.02994v1
- Date: Wed, 4 Oct 2023 17:29:19 GMT
- Title: Multiple Physics Pretraining for Physical Surrogate Models
- Authors: Michael McCabe, Bruno R\'egaldo-Saint Blancard, Liam Holden Parker,
Ruben Ohana, Miles Cranmer, Alberto Bietti, Michael Eickenberg, Siavash
Golkar, Geraud Krawezik, Francois Lanusse, Mariel Pettee, Tiberiu Tesileanu,
Kyunghyun Cho, Shirley Ho
- Abstract summary: We introduce multiple physics pretraining (MPP), an autoregressive task-agnostic pretraining approach for physical surrogate modeling.
We validate the efficacy of our approach on both pretraining and downstream tasks over a broad fluid mechanics-oriented benchmark.
For downstream tasks, we demonstrate that finetuning MPP-trained models results in more accurate predictions across multiple time-steps on new physics.
- Score: 42.19323262199993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce multiple physics pretraining (MPP), an autoregressive
task-agnostic pretraining approach for physical surrogate modeling. MPP
involves training large surrogate models to predict the dynamics of multiple
heterogeneous physical systems simultaneously by learning features that are
broadly useful across diverse physical tasks. In order to learn effectively in
this setting, we introduce a shared embedding and normalization strategy that
projects the fields of multiple systems into a single shared embedding space.
We validate the efficacy of our approach on both pretraining and downstream
tasks over a broad fluid mechanics-oriented benchmark. We show that a single
MPP-pretrained transformer is able to match or outperform task-specific
baselines on all pretraining sub-tasks without the need for finetuning. For
downstream tasks, we demonstrate that finetuning MPP-trained models results in
more accurate predictions across multiple time-steps on new physics compared to
training from scratch or finetuning pretrained video foundation models. We
open-source our code and model weights trained at multiple scales for
reproducibility and community experimentation.
Related papers
- Physics-Guided Foundation Model for Scientific Discovery: An Application to Aquatic Science [13.28811382673697]
We propose a textittextbfPhysics-textbfGuided textbfFoundation textbfModel (textbfPGFM) that combines pre-trained ML models and physics-based models.
We demonstrate the effectiveness of this methodology in modeling water temperature and dissolved oxygen dynamics in real-world lakes.
arXiv Detail & Related papers (2025-02-10T00:48:10Z) - Test-Time Alignment via Hypothesis Reweighting [56.71167047381817]
Large pretrained models often struggle with underspecified tasks.
We propose a novel framework to address the challenge of aligning models to test-time user intent.
arXiv Detail & Related papers (2024-12-11T23:02:26Z) - Spindle: Efficient Distributed Training of Multi-Task Large Models via Wavefront Scheduling [35.06717005729781]
Spindle is a new training system tailored for resource-efficient training of multi-task (MT) multi-modal (MM) models via wavefront scheduling.
Experiments demonstrate the superior performance and efficiency of Spindle, with speedup ratio up to 71% compared to state-of-the-art training systems.
arXiv Detail & Related papers (2024-09-05T09:10:40Z) - POA: Pre-training Once for Models of All Sizes [33.72644336390202]
We propose a novel tri-branch self-supervised training framework, termed as POA (Pre-training Once for All)
Our approach introduces an innovative elastic student branch into a modern self-distillation paradigm.
It achieves state-of-the-art performance using ViT, Swin Transformer and ResNet backbones.
arXiv Detail & Related papers (2024-08-02T06:13:29Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - Towards Foundation Models for Scientific Machine Learning:
Characterizing Scaling and Transfer Behavior [32.74388989649232]
We study how pre-training could be used for scientific machine learning (SciML) applications.
We find that fine-tuning these models yields more performance gains as model size increases.
arXiv Detail & Related papers (2023-06-01T00:32:59Z) - Towards All-in-one Pre-training via Maximizing Multi-modal Mutual
Information [77.80071279597665]
We propose an all-in-one single-stage pre-training approach, named Maximizing Multi-modal Mutual Information Pre-training (M3I Pre-training)
Our approach achieves better performance than previous pre-training methods on various vision benchmarks, including ImageNet classification, object detection, LVIS long-tailed object detection, and ADE20k semantic segmentation.
arXiv Detail & Related papers (2022-11-17T18:59:49Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - The Lottery Tickets Hypothesis for Supervised and Self-supervised
Pre-training in Computer Vision Models [115.49214555402567]
Pre-trained weights often boost a wide range of downstream tasks including classification, detection, and segmentation.
Recent studies suggest that pre-training benefits from gigantic model capacity.
In this paper, we examine supervised and self-supervised pre-trained models through the lens of the lottery ticket hypothesis (LTH)
arXiv Detail & Related papers (2020-12-12T21:53:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.