Machine learning the interaction network in coupled dynamical systems
- URL: http://arxiv.org/abs/2310.03378v2
- Date: Mon, 6 Nov 2023 06:04:15 GMT
- Title: Machine learning the interaction network in coupled dynamical systems
- Authors: Pawan R. Bhure, M. S. Santhanam
- Abstract summary: In a collection of interacting particles, the interaction network contains information about how various components interact with one another.
In this work, we employ a self-supervised neural network model to achieve two outcomes: to recover the interaction network and to predict the dynamics of individual agents.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of interacting dynamical systems continues to attract research
interest in various fields of science and engineering. In a collection of
interacting particles, the interaction network contains information about how
various components interact with one another. Inferring the information about
the interaction network from the dynamics of agents is a problem of
long-standing interest. In this work, we employ a self-supervised neural
network model to achieve two outcomes: to recover the interaction network and
to predict the dynamics of individual agents. Both these information are
inferred solely from the observed trajectory data. This work presents an
application of the Neural Relational Inference model to two dynamical systems:
coupled particles mediated by Hooke's law interaction and coupled phase
(Kuramoto) oscillators.
Related papers
- Diffusion model for relational inference [2.83334745695045]
We propose a financial price model for systems with observable dynamics.
DiffRI learns to infer the probability of presence of connections between components through conditional diffusion modeling.
arXiv Detail & Related papers (2024-01-30T05:25:02Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - Learning Heterogeneous Interaction Strengths by Trajectory Prediction
with Graph Neural Network [0.0]
We propose the attentive relational inference network (RAIN) to infer continuously weighted interaction graphs without any ground-truth interaction strengths.
We show that our RAIN model with the PA mechanism accurately infers continuous interaction strengths for simulated physical systems in an unsupervised manner.
arXiv Detail & Related papers (2022-08-28T09:13:33Z) - Learning Interaction Variables and Kernels from Observations of
Agent-Based Systems [14.240266845551488]
We propose a learning technique that, given observations of states and velocities along trajectories of agents, yields both the variables upon which the interaction kernel depends and the interaction kernel itself.
This yields an effective dimension reduction which avoids the curse of dimensionality from the high-dimensional observation data.
We demonstrate the learning capability of our method to a variety of first-order interacting systems.
arXiv Detail & Related papers (2022-08-04T16:31:01Z) - Interaction Transformer for Human Reaction Generation [61.22481606720487]
We propose a novel interaction Transformer (InterFormer) consisting of a Transformer network with both temporal and spatial attentions.
Our method is general and can be used to generate more complex and long-term interactions.
arXiv Detail & Related papers (2022-07-04T19:30:41Z) - Dynamic Representation Learning with Temporal Point Processes for
Higher-Order Interaction Forecasting [8.680676599607123]
This paper proposes a temporal point process model for hyperedge prediction to address these problems.
As far as our knowledge, this is the first work that uses the temporal point process to forecast hyperedges in dynamic networks.
arXiv Detail & Related papers (2021-12-19T14:24:37Z) - Divide and Rule: Recurrent Partitioned Network for Dynamic Processes [25.855428321990328]
Many dynamic processes are involved with interacting variables, from physical systems to sociological analysis.
Our goal is to represent a system with a part-whole hierarchy and discover the implied dependencies among intra-system variables.
The proposed architecture consists of (i) a perceptive module that extracts a hierarchical and temporally consistent representation of the observation at multiple levels, (ii) a deductive module for determining the relational connection between neurons at each level, and (iii) a statistical module that can predict the future by conditioning on the temporal distributional estimation.
arXiv Detail & Related papers (2021-06-01T06:45:56Z) - Grounded Relational Inference: Domain Knowledge Driven Explainable Autonomous Driving [47.22329993674051]
We aim to develop an explainable model that generates explanations consistent with both human domain knowledge and the model's inherent causal relation.
In particular, we focus on an essential building block of autonomous driving, multi-agent interaction modeling.
We demonstrate that it can model interactive traffic scenarios under both simulation and real-world settings.
arXiv Detail & Related papers (2021-02-23T19:34:32Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.