The Fermionic Entanglement Entropy and Area Law for the Relativistic Dirac Vacuum State
- URL: http://arxiv.org/abs/2310.03493v3
- Date: Sun, 20 Oct 2024 05:47:41 GMT
- Title: The Fermionic Entanglement Entropy and Area Law for the Relativistic Dirac Vacuum State
- Authors: Felix Finster, Magdalena Lottner, Alexander V. Sobolev,
- Abstract summary: We consider the fermionic entanglement entropy for the free Dirac field in a bounded spatial region of Minkowski spacetime.
An area law is proven in the limiting cases where the volume tends to infinity and/or the regularization length tends to zero.
- Score: 44.99833362998488
- License:
- Abstract: We consider the fermionic entanglement entropy for the free Dirac field in a bounded spatial region of Minkowski spacetime. In order to make the system ultraviolet finite, a regularization is introduced. An area law is proven in the limiting cases where the volume tends to infinity and/or the regularization length tends to zero. The technical core of the paper is to generalize a theorem of Harold Widom to pseudo-differential operators whose principal symbols develop a specific discontinuity at a single point.
Related papers
- Finite time path field theory perturbative methods for local quantum spin chain quenches [0.0]
We discuss local magnetic field quenches using perturbative methods of finite time path field theory.
We show how to: i) calculate the basic "bubble" diagram in the Loschmidt echo of a quenched chain to any order in the perturbation; ii) resum the generalized Schwinger-Dyson equation for the fermion two point retarded functions in the "bubble" diagram.
arXiv Detail & Related papers (2024-09-05T18:00:08Z) - Fate of non-Hermitian free fermions with Wannier-Stark ladder [0.0]
The Wannier-Stark localization dynamically alters the entanglement behavior of non-Hermitian free fermions.
We observe the steady state half-chain entanglement entropy and identify two distinct area law regions.
Our findings highlight novel entanglement phases emerging from the interplay between the non-Hermitian skin effect and disorder-free localization.
arXiv Detail & Related papers (2024-05-29T15:00:17Z) - Surface Casimir densities on branes orthogonal to the boundary of
anti-de Sitter spacetime [0.0]
We investigate the vacuum expectation value of the surface energy-momentum tensor (SEMT) for a scalar field with general curvature coupling.
For Robin boundary conditions on the branes, the SEMT is decomposed into the contributions corresponding to the self-energies of the branes.
The effect of gravity on the induced SEMT is essential at separations between the branes of the order or larger than the curvature radius for AdS spacetime.
arXiv Detail & Related papers (2023-09-12T17:21:34Z) - Entanglement area law violation from field-curvature coupling [0.0]
We investigate the entanglement entropy of a massive scalar field nonminimally coupled to spacetime curvature.
We show that large positive coupling constants can significantly alter the entropy scaling with respect to the boundary area.
Our outcomes are interpreted in view of black hole entropy production and early universe scenarios.
arXiv Detail & Related papers (2023-06-14T08:48:51Z) - Entanglement of Harmonic Systems in Squeezed States [0.0]
We extend the study of entanglement of harmonic systems to the case of the most general Gaussian states, namely the squeezed states.
We find the eigenstates and the spectrum of the reduced density matrix and we calculate the entanglement entropy.
We expect this behaviour to hold in higher dimensions as well, as it emerges in a large-squeezing expansion of the entanglement entropy for a general harmonic system.
arXiv Detail & Related papers (2023-04-09T14:06:11Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.