Solving Degree Bounds For Iterated Polynomial Systems
- URL: http://arxiv.org/abs/2310.03637v2
- Date: Mon, 4 Mar 2024 10:03:39 GMT
- Title: Solving Degree Bounds For Iterated Polynomial Systems
- Authors: Matthias Johann Steiner,
- Abstract summary: We prove regularity estimations for attacks on MiMC, Feistel-MiMC, Feistel-MiMC-Hash, Hades and GMiMC.
Our bounds fall in line with the hypothesized complexity of Gr"obner basis attacks on these designs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For Arithmetization-Oriented ciphers and hash functions Gr\"obner basis attacks are generally considered as the most competitive attack vector. Unfortunately, the complexity of Gr\"obner basis algorithms is only understood for special cases, and it is needless to say that these cases do not apply to most cryptographic polynomial systems. Therefore, cryptographers have to resort to experiments, extrapolations and hypotheses to assess the security of their designs. One established measure to quantify the complexity of linear algebra-based Gr\"obner basis algorithms is the so-called solving degree. Caminata \& Gorla revealed that under a certain genericity condition on a polynomial system the solving degree is always upper bounded by the Castelnuovo-Mumford regularity and henceforth by the Macaulay bound, which only takes the degrees and number of variables of the input polynomials into account. In this paper we extend their framework to iterated polynomial systems, the standard polynomial model for symmetric ciphers and hash functions. In particular, we prove solving degree bounds for various attacks on MiMC, Feistel-MiMC, Feistel-MiMC-Hash, Hades and GMiMC. Our bounds fall in line with the hypothesized complexity of Gr\"obner basis attacks on these designs, and to the best of our knowledge this is the first time that a mathematical proof for these complexities is provided. Moreover, by studying polynomials with degree falls we can prove lower bounds on the Castelnuovo-Mumford regularity for attacks on MiMC, Feistel-MiMC and Feistel-MiMC-Hash provided that only a few solutions of the corresponding iterated polynomial system originate from the base field. Hence, regularity-based solving degree estimations can never surpass a certain threshold, a desirable property for cryptographic polynomial systems.
Related papers
- Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
We show that PCA becomes computationally hard at a critical value of the signal's magnitude.
We define a new set of objects, which provide an explicit, near-orthogonal basis for invariants of a given degree.
It also lets us analyze a new problem of distinguishing between different ensembles.
arXiv Detail & Related papers (2024-04-29T14:33:24Z) - The Complexity of Algebraic Algorithms for LWE [0.0]
We revisit the Arora-Ge model to study complexity of Gr"obner basis computations on LWE systems.
We generalize the Gr"obner basis algorithm of Semaev & Tenti to arbitrary systems with a finite degree of regularity.
arXiv Detail & Related papers (2024-02-12T17:59:26Z) - Relaxations and Exact Solutions to Quantum Max Cut via the Algebraic Structure of Swap Operators [0.3177496877224142]
The Quantum Max Cut (QMC) problem has emerged as a test-problem for designing approximation algorithms for local Hamiltonian problems.
In this paper we attack this problem using the algebraic structure of QMC, in particular the relationship between the quantum max cut Hamiltonian and the representation theory of the symmetric group.
arXiv Detail & Related papers (2023-07-28T16:45:16Z) - A multistep strategy for polynomial system solving over finite fields and a new algebraic attack on the stream cipher Trivium [0.3749861135832073]
We present an implementation of this strategy in an algorithm called Multi which is designed for systems having at most one solution.
We prove that an optimal complexity of Multi is achieved by using a full multistep strategy with a maximum number of steps and in turn the standard guess-and-determine strategy, which essentially is a strategy consisting of a single step, is the worst choice.
arXiv Detail & Related papers (2023-04-16T16:09:14Z) - Unitary property testing lower bounds by polynomials [0.15229257192293197]
We study unitary property testing, where a quantum algorithm is given query access to a black-box unitary.
Characterizing the complexity of these problems requires new algorithmic techniques and lower bound methods.
We present a unitary property testing-based approach towards an oracle separation between $mathsfQMA$ and $mathsfQMA(2)$.
arXiv Detail & Related papers (2022-10-12T03:01:00Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
We propose a family of Riemannian algorithms generalizing and extending the seminal approximation framework of Robbins and Monro.
Compared to their Euclidean counterparts, Riemannian algorithms are much less understood due to lack of a global linear structure on the manifold.
We provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes.
arXiv Detail & Related papers (2022-06-14T12:30:11Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions.
We investigate some of their structural properties.
arXiv Detail & Related papers (2020-12-01T13:53:23Z) - Computational Barriers to Estimation from Low-Degree Polynomials [81.67886161671379]
We study the power of low-degrees for the task of detecting the presence of hidden structures.
For a large class of "signal plus noise" problems, we give a user-friendly lower bound for the best possible mean squared error achievable by any degree.
As applications, we give a tight characterization of the low-degree minimum mean squared error for the planted submatrix and planted dense subgraph problems.
arXiv Detail & Related papers (2020-08-05T17:52:10Z) - Formal Power Series on Algebraic Cryptanalysis [0.0]
The degree of regularity and an upper bound of the first fall degree are often used in cryptanalysis.
We provide a theoretical assumption for the first fall degree of a computing system over a sufficiently large field.
arXiv Detail & Related papers (2020-07-29T10:36:20Z) - Free Energy Wells and Overlap Gap Property in Sparse PCA [81.64027805404483]
We study a variant of the sparse PCA (principal component analysis) problem in the "hard" regime.
We show bounds on the depth of free energy wells for various Gibbs measures naturally associated to the problem.
We prove that the Overlap Gap Property (OGP) holds in a significant part of the hard regime.
arXiv Detail & Related papers (2020-06-18T17:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.