Genetic prediction of quantitative traits: a machine learner's guide
focused on height
- URL: http://arxiv.org/abs/2310.04028v1
- Date: Fri, 6 Oct 2023 05:43:50 GMT
- Title: Genetic prediction of quantitative traits: a machine learner's guide
focused on height
- Authors: Lucie Bourguignon and Caroline Weis and Catherine R. Jutzeler and
Michael Adamer
- Abstract summary: We provide an overview for the machine learning community on current state of the art models and associated subtleties.
We use height as an example of a continuous-valued phenotype and provide an introduction to benchmark datasets, confounders, feature selection, and common metrics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning and deep learning have been celebrating many successes in
the application to biological problems, especially in the domain of protein
folding. Another equally complex and important question has received relatively
little attention by the machine learning community, namely the one of
prediction of complex traits from genetics. Tackling this problem requires
in-depth knowledge of the related genetics literature and awareness of various
subtleties associated with genetic data. In this guide, we provide an overview
for the machine learning community on current state of the art models and
associated subtleties which need to be taken into consideration when developing
new models for phenotype prediction. We use height as an example of a
continuous-valued phenotype and provide an introduction to benchmark datasets,
confounders, feature selection, and common metrics.
Related papers
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - A Comparative Analysis of Gene Expression Profiling by Statistical and
Machine Learning Approaches [1.8954222800767324]
We discuss the biological and the methodological limitations of machine learning models to classify cancer samples.
Gene rankings are obtained from explainability methods adapted to these models.
We observe that the information learned by black-box neural networks is related to the notion of differential expression.
arXiv Detail & Related papers (2024-02-01T18:17:36Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Studying Limits of Explainability by Integrated Gradients for Gene
Expression Models [3.220287168504093]
We show that ranking features by importance is not enough to robustly identify biomarkers.
As it is difficult to evaluate whether biomarkers reflect relevant causes without known ground truth, we simulate gene expression data by proposing a hierarchical model.
arXiv Detail & Related papers (2023-03-19T19:54:15Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Feature extraction using Spectral Clustering for Gene Function
Prediction [0.4492444446637856]
This paper presents a novel in silico approach for to the annotation problem that combines cluster analysis and hierarchical multi-label classification.
The proposed approach is applied to a case study on Zea mays, one of the most dominant and productive crops in the world.
arXiv Detail & Related papers (2022-03-25T10:17:36Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Expectile Neural Networks for Genetic Data Analysis of Complex Diseases [3.0088453915399747]
We develop an expectile neural network (ENN) method for genetic data analyses of complex diseases.
Similar to expectile regression, ENN provides a comprehensive view of relationships between genetic variants and disease phenotypes.
We show that the proposed method outperformed an existing expectile regression when there exist complex relationships between genetic variants and disease phenotypes.
arXiv Detail & Related papers (2020-10-26T21:07:40Z) - A Cross-Level Information Transmission Network for Predicting Phenotype
from New Genotype: Application to Cancer Precision Medicine [37.442717660492384]
We propose a novel Cross-LEvel Information Transmission network (CLEIT) framework.
Inspired by domain adaptation, CLEIT first learns the latent representation of high-level domain then uses it as ground-truth embedding.
We demonstrate the effectiveness and performance boost of CLEIT in predicting anti-cancer drug sensitivity from somatic mutations.
arXiv Detail & Related papers (2020-10-09T22:01:00Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.