Coding by Design: GPT-4 empowers Agile Model Driven Development
- URL: http://arxiv.org/abs/2310.04304v1
- Date: Fri, 6 Oct 2023 15:05:05 GMT
- Title: Coding by Design: GPT-4 empowers Agile Model Driven Development
- Authors: Ahmed R. Sadik, Sebastian Brulin, Markus Olhofer
- Abstract summary: This research offers an Agile Model-Driven Development (MDD) approach that enhances code auto-generation using OpenAI's GPT-4.
Our work emphasizes "Agility" as a significant contribution to the current MDD method, particularly when the model undergoes changes or needs deployment in a different programming language.
Ultimately, leveraging GPT-4, our last layer auto-generates code in both Java and Python.
- Score: 0.03683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating code from a natural language using Large Language Models (LLMs)
such as ChatGPT, seems groundbreaking. Yet, with more extensive use, it's
evident that this approach has its own limitations. The inherent ambiguity of
natural language presents challenges for complex software designs. Accordingly,
our research offers an Agile Model-Driven Development (MDD) approach that
enhances code auto-generation using OpenAI's GPT-4. Our work emphasizes
"Agility" as a significant contribution to the current MDD method, particularly
when the model undergoes changes or needs deployment in a different programming
language. Thus, we present a case-study showcasing a multi-agent simulation
system of an Unmanned Vehicle Fleet. In the first and second layer of our
approach, we constructed a textual representation of the case-study using
Unified Model Language (UML) diagrams. In the next layer, we introduced two
sets of constraints that minimize model ambiguity. Object Constraints Language
(OCL) is applied to fine-tune the code constructions details, while FIPA
ontology is used to shape communication semantics and protocols. Ultimately,
leveraging GPT-4, our last layer auto-generates code in both Java and Python.
The Java code is deployed within the JADE framework, while the Python code is
deployed in PADE framework. Concluding our research, we engaged in a
comprehensive evaluation of the generated code. From a behavioural standpoint,
the auto-generated code aligned perfectly with the expected UML sequence
diagram. Structurally, we compared the complexity of code derived from UML
diagrams constrained solely by OCL to that influenced by both OCL and
FIPA-ontology. Results indicate that ontology-constrained model produce
inherently more intricate code, but it remains manageable and low-risk for
further testing and maintenance.
Related papers
- LLM as a code generator in Agile Model Driven Development [1.12646803578849]
This research champions Model Driven Development (MDD) as a viable strategy to overcome these challenges.
We propose an Agile Model Driven Development (AMDD) approach that employs GPT4 as a code generator.
Applying GPT4 auto generation capabilities yields Java and Python code that is compatible with the JADE and PADE frameworks.
arXiv Detail & Related papers (2024-10-24T07:24:11Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.
CodeIP is a novel multi-bit watermarking technique that embeds additional information to preserve provenance details.
Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
We propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy.
Results indicate that MANGO significantly improves the code pass rate based on the strong baselines.
The robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting.
arXiv Detail & Related papers (2024-04-11T08:30:46Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
This paper introduces perplexed, a library for exploring where a language model is perplexed.
We conducted a case study focused on Large Language Models (LLMs) for code generation using an additional tool we built to help with the analysis of code models called codetokenizer.
We found that our studied code LLMs had their worst performance on coding structures where the code was not syntactically correct.
arXiv Detail & Related papers (2024-04-09T22:03:39Z) - Synergy of Large Language Model and Model Driven Engineering for Automated Development of Centralized Vehicular Systems [2.887732304499794]
We present a prototype of a tool leveraging the synergy of model driven engineering (MDE) and Large Language Models (LLM)
The generated code is evaluated in a simulated environment using CARLA simulator connected to an example centralized vehicle architecture, in an emergency brake scenario.
arXiv Detail & Related papers (2024-04-08T13:28:11Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
This paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT.
We show that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.
arXiv Detail & Related papers (2023-10-16T05:09:58Z) - CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules [51.82044734879657]
We propose CodeChain, a novel framework for inference that elicits modularized code generation through a chain of self-revisions.
We find that CodeChain can significantly boost both modularity as well as correctness of the generated solutions, achieving relative pass@1 improvements of 35% on APPS and 76% on CodeContests.
arXiv Detail & Related papers (2023-10-13T10:17:48Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
Large language models (LLMs) pretrained on vast source code have achieved prominent progress in code intelligence.
CodeT5+ is a family of encoder-decoder LLMs for code in which component modules can be flexibly combined to suit a wide range of downstream code tasks.
We extensively evaluate CodeT5+ on over 20 code-related benchmarks in different settings, including zero-shot, finetuning, and instruction-tuning.
arXiv Detail & Related papers (2023-05-13T14:23:07Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.