Fully Spiking Neural Network for Legged Robots
- URL: http://arxiv.org/abs/2310.05022v3
- Date: Mon, 16 Sep 2024 05:35:27 GMT
- Title: Fully Spiking Neural Network for Legged Robots
- Authors: Xiaoyang Jiang, Qiang Zhang, Jingkai Sun, Jiahang Cao, Jingtong Ma, Renjing Xu,
- Abstract summary: Spiking Neural Network (SNN) for legged robots shows exceptional performance in simulated terrains.
SNNs provide natural advantages in inference speed and energy consumption.
This study presents a highly efficient SNN for legged robots that can be seamless integrated into other learning models.
- Score: 6.974746966671198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in legged robots using deep reinforcement learning have led to significant progress. Quadruped robots can perform complex tasks in challenging environments, while bipedal and humanoid robots have also achieved breakthroughs. Current reinforcement learning methods leverage diverse robot bodies and historical information to perform actions, but previous research has not emphasized the speed and energy consumption of network inference and the biological significance of neural networks. Most networks are traditional artificial neural networks that utilize multilayer perceptrons (MLP). This paper presents a novel Spiking Neural Network (SNN) for legged robots, showing exceptional performance in various simulated terrains. SNNs provide natural advantages in inference speed and energy consumption, and their pulse-form processing enhances biological interpretability. This study presents a highly efficient SNN for legged robots that can be seamless integrated into other learning models.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Design and development of opto-neural processors for simulation of
neural networks trained in image detection for potential implementation in
hybrid robotics [0.0]
Living neural networks offer advantages of lower power consumption, faster processing, and biological realism.
This work proposes a simulated living neural network trained indirectly by backpropagating STDP based algorithms using precision activation by optogenetics.
arXiv Detail & Related papers (2024-01-17T04:42:49Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
We introduce neural connectivity concepts emulating the axo-somatic and the axo-axonic synapses.
We demonstrate for the first time, that a biologically realistic implementation of a large-scale ASR model can yield competitive performance levels.
arXiv Detail & Related papers (2021-10-04T21:24:10Z) - A toolbox for neuromorphic sensing in robotics [4.157415305926584]
We introduce a ROS (Robot Operating System) toolbox to encode and decode input signals coming from any type of sensor available on a robot.
This initiative is meant to stimulate and facilitate robotic integration of neuromorphic AI.
arXiv Detail & Related papers (2021-03-03T23:22:05Z) - Neuroevolution of a Recurrent Neural Network for Spatial and Working
Memory in a Simulated Robotic Environment [57.91534223695695]
We evolved weights in a biologically plausible recurrent neural network (RNN) using an evolutionary algorithm to replicate the behavior and neural activity observed in rats.
Our method demonstrates how the dynamic activity in evolved RNNs can capture interesting and complex cognitive behavior.
arXiv Detail & Related papers (2021-02-25T02:13:52Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
Spiking Neural Network algorithms hold the promise to implement advanced artificial intelligence using a fraction of the computations and power requirements.
This paper explains the theoretical workings of neuromorphic technologies based on spikes, and overviews the state-of-art in hardware processors, software platforms and neuromorphic sensing devices.
A progression path is paved for current machine learning specialists to update their skillset, as well as classification or predictive models from the current generation of deep neural networks to SNNs.
arXiv Detail & Related papers (2020-07-10T20:54:42Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - A Spiking Neural Network Emulating the Structure of the Oculomotor
System Requires No Learning to Control a Biomimetic Robotic Head [0.0]
A neuromorphic oculomotor controller is placed at the heart of our in-house biomimetic robotic head prototype.
The controller is unique in the sense that all data are encoded and processed by a spiking neural network (SNN)
We report the robot's target tracking ability, demonstrate that its eye kinematics are similar to those reported in human eye studies and show that a biologically-constrained learning can be used to further refine its performance.
arXiv Detail & Related papers (2020-02-18T13:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.