Distribution-Based Trajectory Clustering
- URL: http://arxiv.org/abs/2310.05123v2
- Date: Mon, 30 Oct 2023 07:26:44 GMT
- Title: Distribution-Based Trajectory Clustering
- Authors: Zi Jing Wang, Ye Zhu, Kai Ming Ting
- Abstract summary: Trajectory clustering enables the discovery of common patterns in trajectory data.
The distance measures employed have two challenges: high computational cost and low fidelity.
We propose to use a recent Isolation Distributional Kernel (IDK) as the main tool to meet all three challenges.
- Score: 14.781854651899705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory clustering enables the discovery of common patterns in trajectory
data. Current methods of trajectory clustering rely on a distance measure
between two points in order to measure the dissimilarity between two
trajectories. The distance measures employed have two challenges: high
computational cost and low fidelity. Independent of the distance measure
employed, existing clustering algorithms have another challenge: either
effectiveness issues or high time complexity. In this paper, we propose to use
a recent Isolation Distributional Kernel (IDK) as the main tool to meet all
three challenges. The new IDK-based clustering algorithm, called TIDKC, makes
full use of the distributional kernel for trajectory similarity measuring and
clustering. TIDKC identifies non-linearly separable clusters with irregular
shapes and varied densities in linear time. It does not rely on random
initialisation and is robust to outliers. An extensive evaluation on 7 large
real-world trajectory datasets confirms that IDK is more effective in capturing
complex structures in trajectories than traditional and deep learning-based
distance measures. Furthermore, the proposed TIDKC has superior clustering
performance and efficiency to existing trajectory clustering algorithms.
Related papers
- GBCT: An Efficient and Adaptive Granular-Ball Clustering Algorithm for Complex Data [49.56145012222276]
We propose a new clustering algorithm called granular-ball clustering (GBCT) via granular-ball computing.
GBCT forms clusters according to the relationship between granular-balls, instead of the traditional point relationship.
As granular-balls can fit various complex data, GBCT performs much better in non-spherical data sets than other traditional clustering methods.
arXiv Detail & Related papers (2024-10-17T07:32:05Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Clustering Method for Time-Series Images Using Quantum-Inspired
Computing Technology [0.0]
Time-series clustering serves as a powerful data mining technique for time-series data in the absence of prior knowledge about clusters.
This study proposes a novel time-series clustering method that leverages an annealing machine.
arXiv Detail & Related papers (2023-05-26T05:58:14Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - A new distance measurement and its application in K-Means Algorithm [7.168628921229442]
K-Means clustering algorithm based on Euclidean distance only pays attention to the linear distance between samples.
We propose a new distance measurement, namely, view-distance, and apply it to the K-Means algorithm.
The experimental results show that, on most datasets, the K-Means algorithm based on view-distance has a certain degree of improvement in classification accuracy and clustering effect.
arXiv Detail & Related papers (2022-06-10T16:26:22Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - ThetA -- fast and robust clustering via a distance parameter [3.0020405188885815]
Clustering is a fundamental problem in machine learning where distance-based approaches have dominated the field for many decades.
We propose a new set of distance threshold methods called Theta-based Algorithms (ThetA)
arXiv Detail & Related papers (2021-02-13T23:16:33Z) - (k, l)-Medians Clustering of Trajectories Using Continuous Dynamic Time
Warping [57.316437798033974]
In this work we consider the problem of center-based clustering of trajectories.
We propose the usage of a continuous version of DTW as distance measure, which we call continuous dynamic time warping (CDTW)
We show a practical way to compute a center from a set of trajectories and subsequently iteratively improve it.
arXiv Detail & Related papers (2020-12-01T13:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.