NeuralFastLAS: Fast Logic-Based Learning from Raw Data
- URL: http://arxiv.org/abs/2310.05145v1
- Date: Sun, 8 Oct 2023 12:33:42 GMT
- Title: NeuralFastLAS: Fast Logic-Based Learning from Raw Data
- Authors: Theo Charalambous, Yaniv Aspis, Alessandra Russo
- Abstract summary: Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
- Score: 54.938128496934695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symbolic rule learners generate interpretable solutions, however they require
the input to be encoded symbolically. Neuro-symbolic approaches overcome this
issue by mapping raw data to latent symbolic concepts using a neural network.
Training the neural and symbolic components jointly is difficult, due to slow
and unstable learning, hence many existing systems rely on hand-engineered
rules to train the network. We introduce NeuralFastLAS, a scalable and fast
end-to-end approach that trains a neural network jointly with a symbolic
learner. For a given task, NeuralFastLAS computes a relevant set of rules,
proved to contain an optimal symbolic solution, trains a neural network using
these rules, and finally finds an optimal symbolic solution to the task while
taking network predictions into account. A key novelty of our approach is
learning a posterior distribution on rules while training the neural network to
improve stability during training. We provide theoretical results for a
sufficient condition on network training to guarantee correctness of the final
solution. Experimental results demonstrate that NeuralFastLAS is able to
achieve state-of-the-art accuracy in arithmetic and logical tasks, with a
training time that is up to two orders of magnitude faster than other jointly
trained neuro-symbolic methods.
Related papers
- Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - Injecting Logical Constraints into Neural Networks via Straight-Through
Estimators [5.6613898352023515]
Injecting discrete logical constraints into neural network learning is one of the main challenges in neuro-symbolic AI.
We find that a straight-through-estimator, a method introduced to train binary neural networks, could effectively be applied to incorporate logical constraints into neural network learning.
arXiv Detail & Related papers (2023-07-10T05:12:05Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic.
We propose an integrated method that enables model-free reinforcement learning from external knowledge sources.
arXiv Detail & Related papers (2021-03-03T12:34:59Z) - Supervised Learning with First-to-Spike Decoding in Multilayer Spiking
Neural Networks [0.0]
We propose a new supervised learning method that can train multilayer spiking neural networks to solve classification problems.
The proposed learning rule supports multiple spikes fired by hidden neurons, and yet is stable by relying on firstspike responses generated by a deterministic output layer.
We also explore several distinct spike-based encoding strategies in order to form compact representations of input data.
arXiv Detail & Related papers (2020-08-16T15:34:48Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - ODEN: A Framework to Solve Ordinary Differential Equations using
Artificial Neural Networks [0.0]
We prove a specific loss function, which does not require knowledge of the exact solution, to evaluate neural networks' performance.
Neural networks are shown to be proficient at approximating continuous solutions within their training domains.
A user-friendly and adaptable open-source code (ODE$mathcalN$) is provided on GitHub.
arXiv Detail & Related papers (2020-05-28T15:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.