Enhancing Cross-Dataset Performance of Distracted Driving Detection With Score Softmax Classifier And Dynamic Gaussian Smoothing Supervision
- URL: http://arxiv.org/abs/2310.05202v4
- Date: Fri, 03 Jan 2025 08:56:43 GMT
- Title: Enhancing Cross-Dataset Performance of Distracted Driving Detection With Score Softmax Classifier And Dynamic Gaussian Smoothing Supervision
- Authors: Cong Duan, Zixuan Liu, Jiahao Xia, Minghai Zhang, Jiacai Liao, Libo Cao,
- Abstract summary: Deep neural networks enable real-time monitoring of in-vehicle drivers, facilitating the timely prediction of distractions, fatigue, and potential hazards.
Recent research has exposed unreliable cross-dataset driver behavior recognition due to a limited number of data samples and background noise.
We propose a Score-Softmax classifier, which reduces the model overconfidence by enhancing category independence.
- Score: 6.891556476231427
- License:
- Abstract: Deep neural networks enable real-time monitoring of in-vehicle drivers, facilitating the timely prediction of distractions, fatigue, and potential hazards. This technology is now integral to intelligent transportation systems. Recent research has exposed unreliable cross-dataset driver behavior recognition due to a limited number of data samples and background noise. In this paper, we propose a Score-Softmax classifier, which reduces the model overconfidence by enhancing category independence. Imitating the human scoring process, we designed a two-dimensional dynamic supervisory matrix consisting of one-dimensional Gaussian-smoothed labels. The dynamic loss descent direction and Gaussian smoothing increase the uncertainty of training to prevent the model from falling into noise traps. Furthermore, we introduce a simple and convenient multi-channel information fusion method;it addresses the fusion issue among arbitrary Score-Softmax classification heads. We conducted cross-dataset experiments using the SFDDD, AUCDD, and the 100-Driver datasets, demonstrating that Score-Softmax improves cross-dataset performance without modifying the model architecture. The experiments indicate that the Score-Softmax classifier reduces the interference of background noise, enhancing the robustness of the model. It increases the cross-dataset accuracy by 21.34%, 11.89%, and 18.77% on the three datasets, respectively. The code is publicly available at https://github.com/congduan-HNU/SSoftmax.
Related papers
- On the effectiveness of partial variance reduction in federated learning
with heterogeneous data [27.527995694042506]
We show that the diversity of the final classification layers across clients impedes the performance of the FedAvg algorithm.
Motivated by this, we propose to correct model by variance reduction only on the final layers.
We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost.
arXiv Detail & Related papers (2022-12-05T11:56:35Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Distinction Maximization Loss: Efficiently Improving Classification
Accuracy, Uncertainty Estimation, and Out-of-Distribution Detection Simply
Replacing the Loss and Calibrating [2.262407399039118]
We propose training deterministic deep neural networks using our DisMax loss.
DisMax usually outperforms all current approaches simultaneously in classification accuracy, uncertainty estimation, inference efficiency, and out-of-distribution detection.
arXiv Detail & Related papers (2022-05-12T04:37:35Z) - Exploiting the Potential of Datasets: A Data-Centric Approach for Model
Robustness [48.70325679650579]
We propose a novel algorithm for dataset enhancement that works well for many existing deep neural networks.
In the data-centric robust learning competition hosted by Alibaba Group and Tsinghua University, our algorithm came third out of more than 3000 competitors.
arXiv Detail & Related papers (2022-03-10T12:16:32Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
We aim at improving data efficiency for both classification and regression setups in deep learning.
To take the power of both worlds, we propose a novel X-model.
X-model plays a minimax game between the feature extractor and task-specific heads.
arXiv Detail & Related papers (2021-10-09T13:56:48Z) - Investigating the Relationship Between Dropout Regularization and Model
Complexity in Neural Networks [0.0]
Dropout Regularization serves to reduce variance in Deep Learning models.
We explore the relationship between the dropout rate and model complexity by training 2,000 neural networks.
We build neural networks that predict the optimal dropout rate given the number of hidden units in each dense layer.
arXiv Detail & Related papers (2021-08-14T23:49:33Z) - AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable
Probabilistic Implicit Differentiation [3.118384520557952]
AutoAugment has sparked an interest in automated augmentation methods for deep learning models.
We show that those methods are not robust when applied to biased and noisy data.
We reformulate AutoAugment as a generalized automated dataset optimization (AutoDO) task.
Our experiments show up to 9.3% improvement for biased datasets with label noise compared to prior methods.
arXiv Detail & Related papers (2021-03-10T04:05:33Z) - End-to-end Sinkhorn Autoencoder with Noise Generator [10.008055997630304]
We propose a novel end-to-end sinkhorn autoencoder with noise generator for efficient data collection simulation.
Our method outperforms competing approaches on a challenging dataset of simulation data from Zero Degree Calorimeters of ALICE experiment in LHC.
arXiv Detail & Related papers (2020-06-11T18:04:10Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.