The Emergence of Reproducibility and Generalizability in Diffusion Models
- URL: http://arxiv.org/abs/2310.05264v4
- Date: Mon, 10 Jun 2024 14:37:45 GMT
- Title: The Emergence of Reproducibility and Generalizability in Diffusion Models
- Authors: Huijie Zhang, Jinfan Zhou, Yifu Lu, Minzhe Guo, Peng Wang, Liyue Shen, Qing Qu,
- Abstract summary: Given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs.
We show that diffusion models are learning distinct distributions affected by the training data size.
This valuable property generalizes to many variants of diffusion models, including those for conditional use, solving inverse problems, and model fine-tuning.
- Score: 10.188731323681575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate an intriguing and prevalent phenomenon of diffusion models which we term as "consistent model reproducibility": given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs. We confirm this phenomenon through comprehensive experiments, implying that different diffusion models consistently reach the same data distribution and scoring function regardless of diffusion model frameworks, model architectures, or training procedures. More strikingly, our further investigation implies that diffusion models are learning distinct distributions affected by the training data size. This is supported by the fact that the model reproducibility manifests in two distinct training regimes: (i) "memorization regime", where the diffusion model overfits to the training data distribution, and (ii) "generalization regime", where the model learns the underlying data distribution. Our study also finds that this valuable property generalizes to many variants of diffusion models, including those for conditional use, solving inverse problems, and model fine-tuning. Finally, our work raises numerous intriguing theoretical questions for future investigation and highlights practical implications regarding training efficiency, model privacy, and the controlled generation of diffusion models.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Renormalizing Diffusion Models [0.7252027234425334]
We use diffusion models to learn inverse renormalization group flows of statistical and quantum field theories.
Our work provides an interpretation of multiscale diffusion models, and gives physically-inspired suggestions for diffusion models which should have novel properties.
arXiv Detail & Related papers (2023-08-23T18:02:31Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - On the Generalization of Diffusion Model [42.447639515467934]
We define the generalization of the generative model, which is measured by the mutual information between the generated data and the training set.
We show that for the empirical optimal diffusion model, the data generated by a deterministic sampler are all highly related to the training set, thus poor generalization.
We propose another training objective whose empirical optimal solution has no potential generalization problem.
arXiv Detail & Related papers (2023-05-24T04:27:57Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.
Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z) - Diffusion Models: A Comprehensive Survey of Methods and Applications [10.557289965753437]
Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding.
Recent studies have shown great enthusiasm on improving the performance of diffusion model.
arXiv Detail & Related papers (2022-09-02T02:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.