A Lightweight Video Anomaly Detection Model with Weak Supervision and Adaptive Instance Selection
- URL: http://arxiv.org/abs/2310.05330v2
- Date: Fri, 5 Jul 2024 15:50:10 GMT
- Title: A Lightweight Video Anomaly Detection Model with Weak Supervision and Adaptive Instance Selection
- Authors: Yang Wang, Jiaogen Zhou, Jihong Guan,
- Abstract summary: This paper focuses on weakly supervised video anomaly detection.
We develop a lightweight video anomaly detection model.
We show that our model can achieve comparable or even superior AUC score compared to the state-of-the-art methods.
- Score: 14.089888316857426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection is to determine whether there are any abnormal events, behaviors or objects in a given video, which enables effective and intelligent public safety management. As video anomaly labeling is both time-consuming and expensive, most existing works employ unsupervised or weakly supervised learning methods. This paper focuses on weakly supervised video anomaly detection, in which the training videos are labeled whether or not they contain any anomalies, but there is no information about which frames the anomalies are located. However, the uncertainty of weakly labeled data and the large model size prevent existing methods from wide deployment in real scenarios, especially the resource-limit situations such as edge-computing. In this paper, we develop a lightweight video anomaly detection model. On the one hand, we propose an adaptive instance selection strategy, which is based on the model's current status to select confident instances, thereby mitigating the uncertainty of weakly labeled data and subsequently promoting the model's performance. On the other hand, we design a lightweight multi-level temporal correlation attention module and an hourglass-shaped fully connected layer to construct the model, which can reduce the model parameters to only 0.56\% of the existing methods (e.g. RTFM). Our extensive experiments on two public datasets UCF-Crime and ShanghaiTech show that our model can achieve comparable or even superior AUC score compared to the state-of-the-art methods, with a significantly reduced number of model parameters.
Related papers
- VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Bench is a benchmark designed to assess the proficiency of Video-LMMs in detecting anomalies and inconsistencies in videos.
Our dataset comprises an array of videos synthetically generated using existing state-of-the-art text-to-video generation models.
We evaluate nine existing Video-LMMs, both open and closed sources, on this benchmarking task and find that most of the models encounter difficulties in effectively identifying the subtle anomalies.
arXiv Detail & Related papers (2024-06-14T17:59:01Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Unsupervised Video Anomaly Detection with Diffusion Models Conditioned
on Compact Motion Representations [17.816344808780965]
unsupervised video anomaly detection (VAD) problem involves classifying each frame in a video as normal or abnormal, without any access to labels.
To accomplish this, proposed method employs conditional diffusion models, where the input data is features extracted from pre-trained network.
Our method utilizes a data-driven threshold and considers a high reconstruction error as an indicator of anomalous events.
arXiv Detail & Related papers (2023-07-04T07:36:48Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - A Modular and Unified Framework for Detecting and Localizing Video
Anomalies [30.83924581439373]
We propose a modular and unified approach to the online video anomaly detection and localization problem, called MOVAD.
It consists of a novel transfer learning based plug-and-play architecture, a sequential anomaly detector, a mathematical framework for selecting the detection threshold, and a suitable performance metric for real-time anomalous event detection in videos.
arXiv Detail & Related papers (2021-03-21T04:16:51Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
Most existing methods use an autoencoder to learn to reconstruct normal videos.
We propose an implicit two-path AE (ITAE), a structure in which two encoders implicitly model appearance and motion features.
For the complex distribution of normal scenes, we suggest normal density estimation of ITAE features.
NF models intensify ITAE performance by learning normality through implicitly learned features.
arXiv Detail & Related papers (2020-10-15T05:02:02Z) - Uncertainty-Aware Weakly Supervised Action Detection from Untrimmed
Videos [82.02074241700728]
In this paper, we present a prohibitive-level action recognition model that is trained with only video-frame labels.
Our method per person detectors have been trained on large image datasets within Multiple Instance Learning framework.
We show how we can apply our method in cases where the standard Multiple Instance Learning assumption, that each bag contains at least one instance with the specified label, is invalid.
arXiv Detail & Related papers (2020-07-21T10:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.