GReAT: A Graph Regularized Adversarial Training Method
- URL: http://arxiv.org/abs/2310.05336v2
- Date: Fri, 3 May 2024 16:23:58 GMT
- Title: GReAT: A Graph Regularized Adversarial Training Method
- Authors: Samet Bayram, Kenneth Barner,
- Abstract summary: GReAT (Graph Regularized Adversarial Training) is a novel regularization method designed to enhance the robust classification performance of deep learning models.
GReAT integrates graph based regularization into the adversarial training process, leveraging the data's inherent structure to enhance model robustness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents GReAT (Graph Regularized Adversarial Training), a novel regularization method designed to enhance the robust classification performance of deep learning models. Adversarial examples, characterized by subtle perturbations that can mislead models, pose a significant challenge in machine learning. Although adversarial training is effective in defending against such attacks, it often overlooks the underlying data structure. In response, GReAT integrates graph based regularization into the adversarial training process, leveraging the data's inherent structure to enhance model robustness. By incorporating graph information during training, GReAT defends against adversarial attacks and improves generalization to unseen data. Extensive evaluations on benchmark datasets demonstrate that GReAT outperforms state of the art methods in robustness, achieving notable improvements in classification accuracy. Specifically, compared to the second best methods, GReAT achieves a performance increase of approximately 4.87% for CIFAR10 against FGSM attack and 10.57% for SVHN against FGSM attack. Additionally, for CIFAR10, GReAT demonstrates a performance increase of approximately 11.05% against PGD attack, and for SVHN, a 5.54% increase against PGD attack. This paper provides detailed insights into the proposed methodology, including numerical results and comparisons with existing approaches, highlighting the significant impact of GReAT in advancing the performance of deep learning models.
Related papers
- A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models [9.304845676825584]
We propose a novel adversarial training framework that integrates multiple attack strategies and advanced machine learning techniques.
Experiments conducted on real-world datasets, including CIFAR-10 and CIFAR-100, demonstrate that the proposed method significantly enhances model robustness.
arXiv Detail & Related papers (2024-10-18T23:47:46Z) - Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness [52.9493817508055]
We propose Pre-trained Model Guided Adversarial Fine-Tuning (PMG-AFT) to enhance the model's zero-shot adversarial robustness.
Our approach consistently improves clean accuracy by an average of 8.72%.
arXiv Detail & Related papers (2024-01-09T04:33:03Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
Adversarial Training (AT) is pivotal in fortifying the robustness of deep learning models.
AT methods, relying on direct iterative updates for target model's defense, frequently encounter obstacles such as unstable training and catastrophic overfitting.
We present a general proxy guided defense framework, LAST' (bf Learn from the Pbf ast)
arXiv Detail & Related papers (2023-10-19T13:13:41Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - ESimCSE Unsupervised Contrastive Learning Jointly with UDA
Semi-Supervised Learning for Large Label System Text Classification Mode [4.708633772366381]
The ESimCSE model efficiently learns text vector representations using unlabeled data to achieve better classification results.
UDA is trained using unlabeled data through semi-supervised learning methods to improve the prediction performance of the models and stability.
adversarial training techniques FGM and PGD are used in the model training process to improve the robustness and reliability of the model.
arXiv Detail & Related papers (2023-04-19T03:44:23Z) - SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and
Boosting Segmentation Robustness [63.726895965125145]
Deep neural network-based image classifications are vulnerable to adversarial perturbations.
In this work, we propose an effective and efficient segmentation attack method, dubbed SegPGD.
Since SegPGD can create more effective adversarial examples, the adversarial training with our SegPGD can boost the robustness of segmentation models.
arXiv Detail & Related papers (2022-07-25T17:56:54Z) - Lagrangian Objective Function Leads to Improved Unforeseen Attack
Generalization in Adversarial Training [0.0]
Adversarial training (AT) has been shown effective to reach a robust model against the attack that is used during training.
We propose a simple modification to the AT that mitigates the mentioned issue.
We show that our attack is faster than other attack schemes that are designed for unseen attack generalization.
arXiv Detail & Related papers (2021-03-29T07:23:46Z) - Evaluating the Robustness of Geometry-Aware Instance-Reweighted
Adversarial Training [9.351384969104771]
We evaluate the robustness of a method called "Geometry-aware Instance-reweighted Adversarial Training"
We find that a network trained with this method is biasing the model towards certain samples by re-scaling the loss.
arXiv Detail & Related papers (2021-03-02T18:15:42Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
Adversarial training is one of the most effective defenses against adversarial attacks for deep learning models.
In this work, we advocate incorporating the hypersphere embedding mechanism into the AT procedure.
We validate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2020-02-20T08:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.