Hierarchical Side-Tuning for Vision Transformers
- URL: http://arxiv.org/abs/2310.05393v4
- Date: Wed, 15 May 2024 16:13:39 GMT
- Title: Hierarchical Side-Tuning for Vision Transformers
- Authors: Weifeng Lin, Ziheng Wu, Wentao Yang, Mingxin Huang, Jun Huang, Lianwen Jin,
- Abstract summary: Fine-tuning pre-trained Vision Transformers (ViTs) has showcased significant promise in enhancing visual recognition tasks.
PETL has shown potential for achieving high performance with fewer parameter updates compared to full fine-tuning.
This paper introduces Hierarchical Side-Tuning (HST), an innovative PETL method facilitating the transfer of ViT models to diverse downstream tasks.
- Score: 33.536948382414316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning pre-trained Vision Transformers (ViTs) has showcased significant promise in enhancing visual recognition tasks. Yet, the demand for individualized and comprehensive fine-tuning processes for each task entails substantial computational and memory costs, posing a considerable challenge. Recent advancements in Parameter-Efficient Transfer Learning (PETL) have shown potential for achieving high performance with fewer parameter updates compared to full fine-tuning. However, their effectiveness is primarily observed in simple tasks like image classification, while they encounter challenges with more complex vision tasks like dense prediction. To address this gap, this study aims to identify an effective tuning method that caters to a wider range of visual tasks. In this paper, we introduce Hierarchical Side-Tuning (HST), an innovative PETL method facilitating the transfer of ViT models to diverse downstream tasks. Diverging from existing methods that focus solely on fine-tuning parameters within specific input spaces or modules, HST employs a lightweight Hierarchical Side Network (HSN). This network leverages intermediate activations from the ViT backbone to model multi-scale features, enhancing prediction capabilities. To evaluate HST, we conducted comprehensive experiments across a range of visual tasks, including classification, object detection, instance segmentation, and semantic segmentation. Remarkably, HST achieved state-of-the-art performance in 13 out of the 19 tasks on the VTAB-1K benchmark, with the highest average Top-1 accuracy of 76.1%, while fine-tuning a mere 0.78M parameters. When applied to object detection and semantic segmentation tasks on the COCO and ADE20K testdev benchmarks, HST outperformed existing PETL methods and even surpassed full fine-tuning.
Related papers
- Beyond Task Vectors: Selective Task Arithmetic Based on Importance Metrics [0.0]
This paper introduces textbfunderlineSelective textbfunderlineTask textbfunderlineArithmetic underlinetextbf(STA), a training-free framework designed to enhance multi-task performance through task-specific parameter fusion.
Experimental results demonstrate that STA achieves superior multi-task performance across benchmarks and excellent performance in task forgetting.
arXiv Detail & Related papers (2024-11-25T06:59:16Z) - Visual Fourier Prompt Tuning [63.66866445034855]
We propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models.
Our approach incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information.
Our results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2024-11-02T18:18:35Z) - CVPT: Cross-Attention help Visual Prompt Tuning adapt visual task [15.642102189777072]
Cross Visual Prompt Tuning is a new type of visual fine-tuning.
CVPT calculates cross-attention between the prompt tokens and the embedded tokens, which allows us to compute the semantic relationship between them.
CVPT significantly improves VPT's performance and efficiency in visual tasks.
arXiv Detail & Related papers (2024-08-27T11:07:19Z) - An Experimental Study on Exploring Strong Lightweight Vision Transformers via Masked Image Modeling Pre-Training [51.622652121580394]
Masked image modeling (MIM) pre-training for large-scale vision transformers (ViTs) has enabled promising downstream performance on top of the learned self-supervised ViT features.
In this paper, we question if the textitextremely simple lightweight ViTs' fine-tuning performance can also benefit from this pre-training paradigm.
Our pre-training with distillation on pure lightweight ViTs with vanilla/hierarchical design ($5.7M$/$6.5M$) can achieve $79.4%$/$78.9%$ top-1 accuracy on ImageNet-1
arXiv Detail & Related papers (2024-04-18T14:14:44Z) - Evaluating the Efficacy of Prompt-Engineered Large Multimodal Models Versus Fine-Tuned Vision Transformers in Image-Based Security Applications [2.8161155726745237]
Large Multimodal Models (LMMs) are designed to interpret and analyze complex data by integrating multiple modalities such as text and images.
This paper investigates the applicability and effectiveness of prompt-engineered LMMs that process both images and text, compared to fine-tuned Vision Transformer (ViT) models.
For the visually non-evident task, the results highlight a significant divergence in performance, with ViT models achieving F1-scores of 97.11% in predicting 25 malware classes and 97.61% in predicting 5 malware families.
arXiv Detail & Related papers (2024-03-26T15:20:49Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - Exploring Efficient Few-shot Adaptation for Vision Transformers [70.91692521825405]
We propose a novel efficient Transformer Tuning (eTT) method that facilitates finetuning ViTs in the Few-shot Learning tasks.
Key novelties come from the newly presented Attentive Prefix Tuning (APT) and Domain Residual Adapter (DRA)
We conduct extensive experiments to show the efficacy of our model.
arXiv Detail & Related papers (2023-01-06T08:42:05Z) - Towards a Unified View on Visual Parameter-Efficient Transfer Learning [96.99924127527002]
We propose a framework with a unified view called visual-PETL (V-PETL) to investigate the different aspects affecting the trade-off.
An effective scheme Swin-BAPAT derived from the proposed V-PETL framework achieves significantly better performance than the state-of-the-art AdaptFormer-Swin.
arXiv Detail & Related papers (2022-10-03T09:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.