WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather Conditions
- URL: http://arxiv.org/abs/2310.05556v2
- Date: Sun, 17 Mar 2024 05:53:44 GMT
- Title: WeatherDepth: Curriculum Contrastive Learning for Self-Supervised Depth Estimation under Adverse Weather Conditions
- Authors: Jiyuan Wang, Chunyu Lin, Lang Nie, Shujun Huang, Yao Zhao, Xing Pan, Rui Ai,
- Abstract summary: We propose WeatherDepth, a self-supervised robust depth estimation model with curriculum contrastive learning.
The proposed solution is proven to be easily incorporated into various architectures and demonstrates state-of-the-art (SoTA) performance on both synthetic and real weather datasets.
- Score: 42.99525455786019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depth estimation models have shown promising performance on clear scenes but fail to generalize to adverse weather conditions due to illumination variations, weather particles, etc. In this paper, we propose WeatherDepth, a self-supervised robust depth estimation model with curriculum contrastive learning, to tackle performance degradation in complex weather conditions. Concretely, we first present a progressive curriculum learning scheme with three simple-to-complex curricula to gradually adapt the model from clear to relative adverse, and then to adverse weather scenes. It encourages the model to gradually grasp beneficial depth cues against the weather effect, yielding smoother and better domain adaption. Meanwhile, to prevent the model from forgetting previous curricula, we integrate contrastive learning into different curricula. By drawing reference knowledge from the previous course, our strategy establishes a depth consistency constraint between different courses toward robust depth estimation in diverse weather. Besides, to reduce manual intervention and better adapt to different models, we designed an adaptive curriculum scheduler to automatically search for the best timing for course switching. In the experiment, the proposed solution is proven to be easily incorporated into various architectures and demonstrates state-of-the-art (SoTA) performance on both synthetic and real weather datasets. Source code and data are available at \url{https://github.com/wangjiyuan9/WeatherDepth}.
Related papers
- WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning [69.82211470647349]
We introduce the first generalist weather foundation model (WeatherGFM)
It addresses a wide spectrum of weather understanding tasks in a unified manner.
Our model can effectively handle up to ten weather understanding tasks, including weather forecasting, super-resolution, weather image translation, and post-processing.
arXiv Detail & Related papers (2024-11-08T09:14:19Z) - Advancing Meteorological Forecasting: AI-based Approach to Synoptic Weather Map Analysis [3.686808512438363]
Our study proposes a novel preprocessing method and convolutional autoencoder model to improve the interpretation of synoptic weather maps.
This model could recognize historical synoptic weather maps that nearly match current atmospheric conditions.
arXiv Detail & Related papers (2024-11-08T07:46:50Z) - WeatherProof: A Paired-Dataset Approach to Semantic Segmentation in
Adverse Weather [9.619700283574533]
We introduce a general paired-training method that leads to improved performance on images in adverse weather conditions.
We create the first semantic segmentation dataset with accurate clear and adverse weather image pairs.
We find that training on these paired clear and adverse weather frames which share an underlying scene results in improved performance on adverse weather data.
arXiv Detail & Related papers (2023-12-15T04:57:54Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Robust Monocular Depth Estimation under Challenging Conditions [81.57697198031975]
State-of-the-art monocular depth estimation approaches are highly unreliable under challenging illumination and weather conditions.
We tackle these safety-critical issues with md4all: a simple and effective solution that works reliably under both adverse and ideal conditions.
arXiv Detail & Related papers (2023-08-18T17:59:01Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
We propose a CLIP embedding module to make the network handle different weather conditions adaptively.
This module integrates the sample specific weather prior extracted by CLIP image encoder together with the distribution specific information learned by a set of parameters.
arXiv Detail & Related papers (2023-06-15T10:06:13Z) - Competitive Simplicity for Multi-Task Learning for Real-Time Foggy Scene
Understanding via Domain Adaptation [17.530091734327296]
We propose a multi-task learning approach capable of performing in real-time semantic scene understanding and monocular depth estimation under foggy weather conditions.
Our model incorporates RGB colour, depth, and luminance images via distinct encoders with dense connectivity and features fusing.
arXiv Detail & Related papers (2020-12-09T20:38:34Z) - Comparison between ARIMA and Deep Learning Models for Temperature
Forecasting [0.0]
This paper compares ARIMA (Auto Regressive Integrated Moving Average) model and deep learning models to forecast temperature.
According to the experimental results deep learning model was able to perform better than the traditional ARIMA methodology.
arXiv Detail & Related papers (2020-11-09T14:21:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.