Adaptive Multi-head Contrastive Learning
- URL: http://arxiv.org/abs/2310.05615v3
- Date: Mon, 23 Sep 2024 14:33:17 GMT
- Title: Adaptive Multi-head Contrastive Learning
- Authors: Lei Wang, Piotr Koniusz, Tom Gedeon, Liang Zheng,
- Abstract summary: In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair.
A single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs.
Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods.
- Score: 44.163227964513695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.
Related papers
- Synthetic Hard Negative Samples for Contrastive Learning [8.776888865665024]
This paper proposes a novel feature-level method, namely sampling synthetic hard negative samples for contrastive learning (SSCL)
We generate more and harder negative samples by mixing negative samples, and then sample them by controlling the contrast of anchor sample with the other negative samples.
Our proposed method improves the classification performance on different image datasets and can be readily integrated into existing methods.
arXiv Detail & Related papers (2023-04-06T09:54:35Z) - Extending Momentum Contrast with Cross Similarity Consistency
Regularization [5.085461418671174]
We present Extended Momentum Contrast, a self-supervised representation learning method founded upon the legacy of the momentum-encoder unit proposed in the MoCo family configurations.
Under the cross consistency regularization rule, we argue that semantic representations associated with any pair of images (positive or negative) should preserve their cross-similarity.
We report a competitive performance on the standard Imagenet-1K linear head classification benchmark.
arXiv Detail & Related papers (2022-06-07T20:06:56Z) - Contrastive Principal Component Learning: Modeling Similarity by
Augmentation Overlap [50.48888534815361]
We propose a novel Contrastive Principal Component Learning (CPCL) method composed of a contrastive-like loss and an on-the-fly projection loss.
By CPCL, the learned low-dimensional embeddings theoretically preserve the similarity of augmentation distribution between samples.
arXiv Detail & Related papers (2022-06-01T13:03:58Z) - Modulated Contrast for Versatile Image Synthesis [60.304183493234376]
MoNCE is a versatile metric that introduces image contrast to learn a calibrated metric for the perception of multifaceted inter-image distances.
We introduce optimal transport in MoNCE to modulate the pushing force of negative samples collaboratively across multiple contrastive objectives.
arXiv Detail & Related papers (2022-03-17T14:03:46Z) - Contrastive Attraction and Contrastive Repulsion for Representation
Learning [131.72147978462348]
Contrastive learning (CL) methods learn data representations in a self-supervision manner, where the encoder contrasts each positive sample over multiple negative samples.
Recent CL methods have achieved promising results when pretrained on large-scale datasets, such as ImageNet.
We propose a doubly CL strategy that separately compares positive and negative samples within their own groups, and then proceeds with a contrast between positive and negative groups.
arXiv Detail & Related papers (2021-05-08T17:25:08Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z) - Conditional Negative Sampling for Contrastive Learning of Visual
Representations [19.136685699971864]
We show that choosing difficult negatives, or those more similar to the current instance, can yield stronger representations.
We introduce a family of mutual information estimators that sample negatives conditionally -- in a "ring" around each positive.
We prove that these estimators lower-bound mutual information, with higher bias but lower variance than NCE.
arXiv Detail & Related papers (2020-10-05T14:17:32Z) - Learning from Aggregate Observations [82.44304647051243]
We study the problem of learning from aggregate observations where supervision signals are given to sets of instances.
We present a general probabilistic framework that accommodates a variety of aggregate observations.
Simple maximum likelihood solutions can be applied to various differentiable models.
arXiv Detail & Related papers (2020-04-14T06:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.