Deep Concept Removal
- URL: http://arxiv.org/abs/2310.05755v1
- Date: Mon, 9 Oct 2023 14:31:03 GMT
- Title: Deep Concept Removal
- Authors: Yegor Klochkov and Jean-Francois Ton and Ruocheng Guo and Yang Liu and
Hang Li
- Abstract summary: We address the problem of concept removal in deep neural networks.
We propose a novel method based on adversarial linear classifiers trained on a concept dataset.
We also introduce an implicit gradient-based technique to tackle the challenges associated with adversarial training.
- Score: 29.65899467379793
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of concept removal in deep neural networks, aiming to
learn representations that do not encode certain specified concepts (e.g.,
gender etc.) We propose a novel method based on adversarial linear classifiers
trained on a concept dataset, which helps to remove the targeted attribute
while maintaining model performance. Our approach Deep Concept Removal
incorporates adversarial probing classifiers at various layers of the network,
effectively addressing concept entanglement and improving out-of-distribution
generalization. We also introduce an implicit gradient-based technique to
tackle the challenges associated with adversarial training using linear
classifiers. We evaluate the ability to remove a concept on a set of popular
distributionally robust optimization (DRO) benchmarks with spurious
correlations, as well as out-of-distribution (OOD) generalization tasks.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
We show that present SOTA concept learning approaches suffer from two major problems - lack of concept fidelity and limited concept interoperability.
We propose a novel self-explaining architecture for concept learning across domains.
We demonstrate the efficacy of our proposed approach over current SOTA concept learning approaches on four widely used real-world datasets.
arXiv Detail & Related papers (2024-05-01T06:50:18Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
Concepts are known to be the thinking ground of humans.
We provide a systematic review and taxonomy of various concept representations and their discovery algorithms in Deep Neural Networks (DNNs)
We also provide details on concept-based model improvement literature marking the first comprehensive survey of these methods.
arXiv Detail & Related papers (2024-03-21T17:09:20Z) - Separable Multi-Concept Erasure from Diffusion Models [52.51972530398691]
We propose a Separable Multi-concept Eraser (SepME) to eliminate unsafe concepts from large-scale diffusion models.
The latter separates optimizable model weights, making each weight increment correspond to a specific concept erasure.
Extensive experiments indicate the efficacy of our approach in eliminating concepts, preserving model performance, and offering flexibility in the erasure or recovery of various concepts.
arXiv Detail & Related papers (2024-02-03T11:10:57Z) - Understanding Distributed Representations of Concepts in Deep Neural
Networks without Supervision [25.449397570387802]
We propose an unsupervised method for discovering distributed representations of concepts by selecting a principal subset of neurons.
Our empirical findings demonstrate that instances with similar neuron activation states tend to share coherent concepts.
It can be utilized to identify unlabeled subclasses within data and to detect the causes of misclassifications.
arXiv Detail & Related papers (2023-12-28T07:33:51Z) - Removing Spurious Concepts from Neural Network Representations via Joint Subspace Estimation [0.0]
Out-of-distribution generalization in neural networks is often hampered by spurious correlations.
Existing concept-removal methods tend to be overzealous by inadvertently eliminating features associated with the main task of the model.
We propose an iterative algorithm that separates spurious from main-task concepts by jointly identifying two low-dimensional subspaces in the neural network representation.
arXiv Detail & Related papers (2023-10-18T14:22:36Z) - Navigating Neural Space: Revisiting Concept Activation Vectors to
Overcome Directional Divergence [14.071950294953005]
Concept Activation Vectors (CAVs) have emerged as a popular tool for modeling human-understandable concepts in the latent space.
In this paper we show that such a separability-oriented leads to solutions, which may diverge from the actual goal of precisely modeling the concept direction.
We introduce pattern-based CAVs, solely focussing on concept signals, thereby providing more accurate concept directions.
arXiv Detail & Related papers (2022-02-07T19:40:20Z) - Defensive Tensorization [113.96183766922393]
We propose tensor defensiveization, an adversarial defence technique that leverages a latent high-order factorization of the network.
We empirically demonstrate the effectiveness of our approach on standard image classification benchmarks.
We validate the versatility of our approach across domains and low-precision architectures by considering an audio task and binary networks.
arXiv Detail & Related papers (2021-10-26T17:00:16Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
We introduce a novel variant called Semantic Contrastive Learning (SCL)
It explores the characteristics of both conventional contrastive learning and deep clustering.
It can amplify the strengths of contrastive learning and deep clustering in a unified approach.
arXiv Detail & Related papers (2021-03-03T20:20:48Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.