Domain-wise Invariant Learning for Panoptic Scene Graph Generation
- URL: http://arxiv.org/abs/2310.05867v2
- Date: Tue, 5 Dec 2023 11:37:54 GMT
- Title: Domain-wise Invariant Learning for Panoptic Scene Graph Generation
- Authors: Li Li, You Qin, Wei Ji, Yuxiao Zhou, Roger Zimmermann
- Abstract summary: Panoptic Scene Graph Generation (PSG) involves the detection of objects and the prediction of their corresponding relationships (predicates)
The presence of biased predicate annotations poses a significant challenge for PSG models, as it hinders their ability to establish a clear decision boundary among different predicates.
We propose a novel framework to infer potentially biased annotations by measuring the predicate prediction risks within each subject-object pair.
- Score: 26.159312466958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Panoptic Scene Graph Generation (PSG) involves the detection of objects and
the prediction of their corresponding relationships (predicates). However, the
presence of biased predicate annotations poses a significant challenge for PSG
models, as it hinders their ability to establish a clear decision boundary
among different predicates. This issue substantially impedes the practical
utility and real-world applicability of PSG models. To address the intrinsic
bias above, we propose a novel framework to infer potentially biased
annotations by measuring the predicate prediction risks within each
subject-object pair (domain), and adaptively transfer the biased annotations to
consistent ones by learning invariant predicate representation embeddings.
Experiments show that our method significantly improves the performance of
benchmark models, achieving a new state-of-the-art performance, and shows great
generalization and effectiveness on PSG dataset.
Related papers
- Ensemble Predicate Decoding for Unbiased Scene Graph Generation [40.01591739856469]
Scene Graph Generation (SGG) aims to generate a comprehensive graphical representation that captures semantic information of a given scenario.
The model's performance in predicting more fine-grained predicates is hindered by a significant predicate bias.
This paper proposes Ensemble Predicate Decoding (EPD), which employs multiple decoders to attain unbiased scene graph generation.
arXiv Detail & Related papers (2024-08-26T11:24:13Z) - Endowing Pre-trained Graph Models with Provable Fairness [49.8431177748876]
We propose a novel adapter-tuning framework that endows pre-trained graph models with provable fairness (called GraphPAR)
Specifically, we design a sensitive semantic augmenter on node representations, to extend the node representations with different sensitive attribute semantics for each node.
With GraphPAR, we quantify whether the fairness of each node is provable, i.e., predictions are always fair within a certain range of sensitive attribute semantics.
arXiv Detail & Related papers (2024-02-19T14:16:08Z) - Understanding Before Recommendation: Semantic Aspect-Aware Review Exploitation via Large Language Models [53.337728969143086]
Recommendation systems harness user-item interactions like clicks and reviews to learn their representations.
Previous studies improve recommendation accuracy and interpretability by modeling user preferences across various aspects and intents.
We introduce a chain-based prompting approach to uncover semantic aspect-aware interactions.
arXiv Detail & Related papers (2023-12-26T15:44:09Z) - Mitigating Semantic Confusion from Hostile Neighborhood for Graph Active
Learning [38.5372139056485]
Graph Active Learning (GAL) aims to find the most informative nodes in graphs for annotation to maximize the Graph Neural Networks (GNNs) performance.
Gal strategies may introduce semantic confusion to the selected training set, particularly when graphs are noisy.
We present Semantic-aware Active learning framework for Graphs (SAG) to mitigate the semantic confusion problem.
arXiv Detail & Related papers (2023-08-17T07:06:54Z) - Panoptic Scene Graph Generation with Semantics-Prototype Learning [23.759498629378772]
Panoptic Scene Graph Generation (PSG) parses objects and predicts their relationships (predicate) to connect human language and visual scenes.
Different language preferences of annotators and semantic overlaps between predicates lead to biased predicate annotations.
We propose a novel framework named ADTrans to adaptively transfer biased predicate annotations to informative and unified ones.
arXiv Detail & Related papers (2023-07-28T14:04:06Z) - Adaptive Fine-Grained Predicates Learning for Scene Graph Generation [122.4588401267544]
General Scene Graph Generation (SGG) models tend to predict head predicates and re-balancing strategies prefer tail categories.
We propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG.
Our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100, achieving new state-of-the-art performance.
arXiv Detail & Related papers (2022-07-11T03:37:57Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
We show that pre-trained language models with few examples show strong prediction bias across labels.
Although few-shot fine-tuning can mitigate the prediction bias, our analysis shows models gain performance improvement by capturing non-task-related features.
These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior.
arXiv Detail & Related papers (2022-04-17T15:55:18Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.