Factual and Personalized Recommendations using Language Models and
Reinforcement Learning
- URL: http://arxiv.org/abs/2310.06176v1
- Date: Mon, 9 Oct 2023 21:58:55 GMT
- Title: Factual and Personalized Recommendations using Language Models and
Reinforcement Learning
- Authors: Jihwan Jeong, Yinlam Chow, Guy Tennenholtz, Chih-Wei Hsu, Azamat
Tulepbergenov, Mohammad Ghavamzadeh, Craig Boutilier
- Abstract summary: We develop a comPelling, Precise, Personalized, Preference-relevant language model (P4LM)
P4LM recommends items to users while putting emphasis on explaining item characteristics and their relevance.
We develop a joint reward function that measures precision, appeal, and personalization.
- Score: 38.96462170594542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems (RSs) play a central role in connecting users to content,
products, and services, matching candidate items to users based on their
preferences. While traditional RSs rely on implicit user feedback signals,
conversational RSs interact with users in natural language. In this work, we
develop a comPelling, Precise, Personalized, Preference-relevant language model
(P4LM) that recommends items to users while putting emphasis on explaining item
characteristics and their relevance. P4LM uses the embedding space
representation of a user's preferences to generate compelling responses that
are factually-grounded and relevant w.r.t. the user's preferences. Moreover, we
develop a joint reward function that measures precision, appeal, and
personalization, which we use as AI-based feedback in a reinforcement
learning-based language model framework. Using the MovieLens 25M dataset, we
demonstrate that P4LM delivers compelling, personalized movie narratives to
users.
Related papers
- Towards Empathetic Conversational Recommender Systems [77.53167131692]
We propose an empathetic conversational recommender (ECR) framework.
ECR contains two main modules: emotion-aware item recommendation and emotion-aligned response generation.
Our experiments on the ReDial dataset validate the efficacy of our framework in enhancing recommendation accuracy and improving user satisfaction.
arXiv Detail & Related papers (2024-08-30T15:43:07Z) - Large Language Model Driven Recommendation [34.45328907249946]
The advent of language-driven recommendation has unlocked the use of natural language (NL) interactions for recommendation.
This chapter discusses how LLMs' abilities for general NL reasoning present novel opportunities to build highly personalized RSs.
arXiv Detail & Related papers (2024-08-20T15:36:24Z) - Aligning LLM Agents by Learning Latent Preference from User Edits [23.235995078727658]
We study interactive learning of language agents based on user edits made to the agent's output.
We propose a learning framework, PRELUDE, that infers a description of the user's latent preference based on historic edit data.
We introduce two interactive environments -- summarization and email writing, and use a GPT-4 simulated user for evaluation.
arXiv Detail & Related papers (2024-04-23T17:57:47Z) - Personalized Language Modeling from Personalized Human Feedback [49.344833339240566]
Reinforcement Learning from Human Feedback (RLHF) is commonly used to fine-tune large language models to better align with human preferences.
In this work, we aim to address this problem by developing methods for building personalized language models.
arXiv Detail & Related papers (2024-02-06T04:18:58Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - Interpreting User Requests in the Context of Natural Language Standing
Instructions [89.12540932734476]
We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains.
A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue.
arXiv Detail & Related papers (2023-11-16T11:19:26Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - Learning Implicit User Profiles for Personalized Retrieval-Based Chatbot [29.053654530024083]
IMPChat aims to learn an implicit user profile through modeling user's personalized language style and personalized preferences separately.
To learn a user's personalized language style, we elaborately build language models from shallow to deep using the user's historical responses.
We match each response candidate with the personalized language style and personalized preference, respectively, and fuse the two matching signals to determine the final ranking score.
arXiv Detail & Related papers (2021-08-18T02:07:28Z) - A Neural Topical Expansion Framework for Unstructured Persona-oriented
Dialogue Generation [52.743311026230714]
Persona Exploration and Exploitation (PEE) is able to extend the predefined user persona description with semantically correlated content.
PEE consists of two main modules: persona exploration and persona exploitation.
Our approach outperforms state-of-the-art baselines in terms of both automatic and human evaluations.
arXiv Detail & Related papers (2020-02-06T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.