Top of the Heap: Efficient Memory Error Protection for Many Heap Objects
- URL: http://arxiv.org/abs/2310.06397v1
- Date: Tue, 10 Oct 2023 08:04:08 GMT
- Title: Top of the Heap: Efficient Memory Error Protection for Many Heap Objects
- Authors: Kaiming Huang, Mathias Payer, Zhiyun Qian, Jack Sampson, Gang Tan, Trent Jaeger,
- Abstract summary: We propose a solution for heap memory safety enforcement that aims to provide comprehensive protection from memory errors efficiently.
We present the Uriah system that statically validates spatial and type memory safety for heap objects.
We show that Uriah only incurs 2.9% overhead and only uses 9.3% more memory on SPEC CPU2006 (C/C++) benchmarks.
- Score: 37.992322891101374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploits against heap memory errors continue to be a major concern. Although many defenses have been proposed, heap data are not protected from attacks that exploit memory errors systematically. Research defenses focus on complete coverage of heap objects, often giving up on comprehensive memory safety protection and/or incurring high costs in performance overhead and memory usage. In this paper, we propose a solution for heap memory safety enforcement that aims to provide comprehensive protection from memory errors efficiently by protecting those heap objects whose accesses are provably safe from memory errors. Specifically, we present the Uriah system that statically validates spatial and type memory safety for heap objects, isolating compliant objects on a safe heap that enforces temporal type safety to prevent attacks on memory reuse. Using Uriah, 71.9% of heap allocation sites can be shown to produce objects (73% of allocations are found safe) that satisfy spatial and type safety, which are then isolated using Uriah's heap allocator from memory accesses via unsafe heap objects. Uriah only incurs 2.9% overhead and only uses 9.3% more memory on SPEC CPU2006 (C/C++) benchmarks, showing that many heap objects can be protected from all classes of memory errors efficiently.
Related papers
- ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning [49.47193675702453]
Large Language Models (LLMs) have demonstrated remarkable generative capabilities.<n>LLMs remain vulnerable to malicious instructions that can bypass safety constraints.<n>We propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one.
arXiv Detail & Related papers (2025-07-14T09:05:54Z) - Tit-for-Tat: Safeguarding Large Vision-Language Models Against Jailbreak Attacks via Adversarial Defense [90.71884758066042]
Large vision-language models (LVLMs) introduce a unique vulnerability: susceptibility to malicious attacks via visual inputs.
We propose ESIII (Embedding Security Instructions Into Images), a novel methodology for transforming the visual space from a source of vulnerability into an active defense mechanism.
arXiv Detail & Related papers (2025-03-14T17:39:45Z) - SafeSwitch: Steering Unsafe LLM Behavior via Internal Activation Signals [50.463399903987245]
Large language models (LLMs) exhibit exceptional capabilities across various tasks but also pose risks by generating harmful content.<n>We show that LLMs can similarly perform internal assessments about safety in their internal states.<n>We propose SafeSwitch, a framework that regulates unsafe outputs by utilizing the prober-based internal state monitor.
arXiv Detail & Related papers (2025-02-03T04:23:33Z) - Defining and Evaluating Physical Safety for Large Language Models [62.4971588282174]
Large Language Models (LLMs) are increasingly used to control robotic systems such as drones.
Their risks of causing physical threats and harm in real-world applications remain unexplored.
We classify the physical safety risks of drones into four categories: (1) human-targeted threats, (2) object-targeted threats, (3) infrastructure attacks, and (4) regulatory violations.
arXiv Detail & Related papers (2024-11-04T17:41:25Z) - SJMalloc: the security-conscious, fast, thread-safe and memory-efficient heap allocator [0.0]
Heap-based exploits pose a significant threat to application security.
hardened allocators have not been widely adopted in real-world applications.
SJMalloc stores its metadata out-of-band, away from the application's data on the heap.
SJMalloc demonstrates a 6% performance improvement compared to GLibcs allocator, while using only 5% more memory.
arXiv Detail & Related papers (2024-10-23T14:47:12Z) - SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance [48.80398992974831]
SafeAligner is a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks.
We develop two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses.
We show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones.
arXiv Detail & Related papers (2024-06-26T07:15:44Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions.
We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space.
Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations.
arXiv Detail & Related papers (2024-06-24T19:29:47Z) - CAMP: Compiler and Allocator-based Heap Memory Protection [23.84729234219481]
We present CAMP, a new sanitizer for detecting and capturing heap memory corruption.
CAMP enables various compiler optimization strategies and thus eliminates redundant and unnecessary check instrumentation.
Our evaluation and comparison of CAMP with existing tools, using both real-world applications and SPEC CPU benchmarks, show that it provides even better heap corruption detection capability with lower runtime overhead.
arXiv Detail & Related papers (2024-06-04T19:37:41Z) - ShadowBound: Efficient Heap Memory Protection Through Advanced Metadata Management and Customized Compiler Optimization [24.4696797147503]
heap corruption poses severe threats to system security.
We present ShadowBound, a unique heap memory protection design.
We implement ShadowBound atop the LLVM framework and integrated three state-of-the-art use-after-free defenses.
arXiv Detail & Related papers (2024-06-04T07:02:53Z) - Towards Comprehensive and Efficient Post Safety Alignment of Large Language Models via Safety Patching [77.36097118561057]
textscSafePatching is a novel framework for comprehensive and efficient PSA.
textscSafePatching achieves a more comprehensive and efficient PSA than baseline methods.
arXiv Detail & Related papers (2024-05-22T16:51:07Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - CryptSan: Leveraging ARM Pointer Authentication for Memory Safety in
C/C++ [0.9208007322096532]
CryptSan is a memory safety approach based on ARM Pointer Authentication.
We present a full LLVM-based prototype implementation, running on an M1 MacBook Pro.
This, together with its interoperability with uninstrumented libraries and cryptographic protection against attacks on metadata, makes CryptSan a viable solution for retrofitting memory safety to C/C++ programs.
arXiv Detail & Related papers (2022-02-17T14:04:01Z) - ObjectSeeker: Certifiably Robust Object Detection against Patch Hiding
Attacks via Patch-agnostic Masking [95.6347501381882]
Object detectors are found to be vulnerable to physical-world patch hiding attacks.
We propose ObjectSeeker as a framework for building certifiably robust object detectors.
arXiv Detail & Related papers (2022-02-03T19:34:25Z) - CGuard: Efficient Spatial Safety for C [0.5249805590164903]
We present CGuard, a tool that provides object-bounds protection for C applications with comparable overheads to SGXBounds without restricting the application address space.
CGuard stores the bounds information just before the base address of an object and encodes the relative offset of the base address in the spare bits of the virtual address available in x86_64 architecture.
arXiv Detail & Related papers (2021-07-22T09:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.