Hexa: Self-Improving for Knowledge-Grounded Dialogue System
- URL: http://arxiv.org/abs/2310.06404v3
- Date: Tue, 2 Apr 2024 11:28:40 GMT
- Title: Hexa: Self-Improving for Knowledge-Grounded Dialogue System
- Authors: Daejin Jo, Daniel Wontae Nam, Gunsoo Han, Kyoung-Woon On, Taehwan Kwon, Seungeun Rho, Sungwoong Kim,
- Abstract summary: We develop a self-improving method to improve the generative performances of intermediate steps without the ground truth data.
In particular, we propose a novel bootstrapping scheme with a guided prompt and a modified loss function to enhance the diversity of appropriate self-generated responses.
- Score: 13.293318039036562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A common practice in knowledge-grounded dialogue generation is to explicitly utilize intermediate steps (e.g., web-search, memory retrieval) with modular approaches. However, data for such steps are often inaccessible compared to those of dialogue responses as they are unobservable in an ordinary dialogue. To fill in the absence of these data, we develop a self-improving method to improve the generative performances of intermediate steps without the ground truth data. In particular, we propose a novel bootstrapping scheme with a guided prompt and a modified loss function to enhance the diversity of appropriate self-generated responses. Through experiments on various benchmark datasets, we empirically demonstrate that our method successfully leverages a self-improving mechanism in generating intermediate and final responses and improves the performances on the task of knowledge-grounded dialogue generation.
Related papers
- PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
We pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying.
To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model.
arXiv Detail & Related papers (2023-05-24T14:06:27Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
We introduce contrastive learning and multi-task learning to jointly model the problem.
Our proposed model achieves state-of-the-art performance on several public datasets.
arXiv Detail & Related papers (2022-03-22T10:13:27Z) - Achieving Conversational Goals with Unsupervised Post-hoc Knowledge
Injection [37.15893335147598]
A limitation of current neural dialog models is that they tend to suffer from a lack of specificity and informativeness in generated responses.
We propose a post-hoc knowledge-injection technique where we first retrieve a diverse set of relevant knowledge snippets conditioned on both the dialog history and an initial response from an existing dialog model.
We construct multiple candidate responses, individually injecting each retrieved snippet into the initial response using a gradient-based decoding method, and then select the final response with an unsupervised ranking step.
arXiv Detail & Related papers (2022-03-22T00:42:27Z) - Pan More Gold from the Sand: Refining Open-domain Dialogue Training with
Noisy Self-Retrieval Generation [41.928481605188146]
We show existing open-domain dialogue generation methods by memorizing context-response paired data with causal or encode-decode language models underutilize the training data.
Our method performed well on zero-shot experiments, which indicates that our method can be more robust to real-world data.
arXiv Detail & Related papers (2022-01-27T08:02:59Z) - Retrieval-Free Knowledge-Grounded Dialogue Response Generation with
Adapters [52.725200145600624]
We propose KnowExpert to bypass the retrieval process by injecting prior knowledge into the pre-trained language models with lightweight adapters.
Experimental results show that KnowExpert performs comparably with the retrieval-based baselines.
arXiv Detail & Related papers (2021-05-13T12:33:23Z) - Dialogue Distillation: Open-Domain Dialogue Augmentation Using Unpaired
Data [61.71319905364992]
We propose a novel data augmentation method for training open-domain dialogue models by utilizing unpaired data.
A data-level distillation process is first proposed to construct augmented dialogues where both post and response are retrieved from the unpaired data.
A ranking module is employed to filter out low-quality dialogues.
A model-level distillation process is employed to distill a teacher model trained on high-quality paired data to augmented dialogue pairs.
arXiv Detail & Related papers (2020-09-20T13:06:38Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation.
Previous works usually employ various neural network architectures to model the history.
This paper proposes a Ranking Enhanced Dialogue generation framework.
arXiv Detail & Related papers (2020-08-13T01:49:56Z) - Learning an Unreferenced Metric for Online Dialogue Evaluation [53.38078951628143]
We propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances.
We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference.
arXiv Detail & Related papers (2020-05-01T20:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.