A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks
- URL: http://arxiv.org/abs/2310.06468v1
- Date: Tue, 10 Oct 2023 09:39:38 GMT
- Title: A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks
- Authors: Yang Wang, Bo Dong, Ke Xu, Haiyin Piao, Yufei Ding, Baocai Yin, Xin
Yang
- Abstract summary: Adversarial Converging Time Score (ACTS) measures the converging time as an adversarial robustness metric.
We validate the effectiveness and generalization of the proposed ACTS metric against different adversarial attacks on the large-scale ImageNet dataset.
- Score: 52.09243852066406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) are widely used for computer vision tasks.
However, it has been shown that deep models are vulnerable to adversarial
attacks, i.e., their performances drop when imperceptible perturbations are
made to the original inputs, which may further degrade the following visual
tasks or introduce new problems such as data and privacy security. Hence,
metrics for evaluating the robustness of deep models against adversarial
attacks are desired. However, previous metrics are mainly proposed for
evaluating the adversarial robustness of shallow networks on the small-scale
datasets. Although the Cross Lipschitz Extreme Value for nEtwork Robustness
(CLEVER) metric has been proposed for large-scale datasets (e.g., the ImageNet
dataset), it is computationally expensive and its performance relies on a
tractable number of samples. In this paper, we propose the Adversarial
Converging Time Score (ACTS), an attack-dependent metric that quantifies the
adversarial robustness of a DNN on a specific input. Our key observation is
that local neighborhoods on a DNN's output surface would have different shapes
given different inputs. Hence, given different inputs, it requires different
time for converging to an adversarial sample. Based on this geometry meaning,
ACTS measures the converging time as an adversarial robustness metric. We
validate the effectiveness and generalization of the proposed ACTS metric
against different adversarial attacks on the large-scale ImageNet dataset using
state-of-the-art deep networks. Extensive experiments show that our ACTS metric
is an efficient and effective adversarial metric over the previous CLEVER
metric.
Related papers
- Adversarial Attacks and Dimensionality in Text Classifiers [3.4179091429029382]
Adversarial attacks on machine learning algorithms have been a key deterrent to the adoption of AI in many real-world use cases.
We study adversarial examples in the field of natural language processing, specifically text classification tasks.
arXiv Detail & Related papers (2024-04-03T11:49:43Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
Convolutional neural networks (CNN) define the state-of-the-art solution on many perceptual tasks.
Current CNN approaches largely remain vulnerable against adversarial perturbations of the input that have been crafted specifically to fool the system.
We propose a simple and light-weight detector, which leverages recent findings on the relation between networks' local intrinsic dimensionality (LID) and adversarial attacks.
arXiv Detail & Related papers (2022-12-13T17:51:32Z) - Evaluation of Neural Networks Defenses and Attacks using NDCG and
Reciprocal Rank Metrics [6.6389732792316]
We present two metrics which are specifically designed to measure the effect of attacks, or the recovery effect of defenses, on the output of neural networks in classification tasks.
Inspired by the normalized discounted cumulative gain and the reciprocal rank metrics used in information retrieval literature, we treat the neural network predictions as ranked lists of results.
Compared to the common classification metrics, our proposed metrics demonstrate superior informativeness and distinctiveness.
arXiv Detail & Related papers (2022-01-10T12:54:45Z) - Pruning in the Face of Adversaries [0.0]
We evaluate the impact of neural network pruning on the adversarial robustness against L-0, L-2 and L-infinity attacks.
Our results confirm that neural network pruning and adversarial robustness are not mutually exclusive.
We extend our analysis to situations that incorporate additional assumptions on the adversarial scenario and show that depending on the situation, different strategies are optimal.
arXiv Detail & Related papers (2021-08-19T09:06:16Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
We propose a novel Graph Neural Network (GNN) model to learn flow patterns of attacks structured as graphs.
Our model is able to maintain the same level of accuracy as in previous experiments, while state-of-the-art ML techniques degrade up to 50% their accuracy (F1-score) under adversarial attacks.
arXiv Detail & Related papers (2021-07-30T16:56:39Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
Crowd counting has drawn much attention due to its importance in safety-critical surveillance systems.
Recent studies have demonstrated that deep neural network (DNN) methods are vulnerable to adversarial attacks.
We propose a robust attack strategy called Adversarial Patch Attack with Momentum to evaluate the robustness of crowd counting models.
arXiv Detail & Related papers (2021-04-22T05:10:55Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
We use mode connectivity to study the adversarial robustness of deep neural networks.
Our experiments cover various types of adversarial attacks applied to different network architectures and datasets.
Our results suggest that mode connectivity offers a holistic tool and practical means for evaluating and improving adversarial robustness.
arXiv Detail & Related papers (2020-04-30T19:12:50Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.