AutoCycle-VC: Towards Bottleneck-Independent Zero-Shot Cross-Lingual
Voice Conversion
- URL: http://arxiv.org/abs/2310.06546v1
- Date: Tue, 10 Oct 2023 11:50:16 GMT
- Title: AutoCycle-VC: Towards Bottleneck-Independent Zero-Shot Cross-Lingual
Voice Conversion
- Authors: Haeyun Choi, Jio Gim, Yuho Lee, Youngin Kim, and Young-Joo Suh
- Abstract summary: This paper proposes a simple and robust zero-shot voice conversion system with a cycle structure and mel-spectrogram pre-processing.
Our model outperforms existing state-of-the-art results in both subjective and objective evaluations.
- Score: 2.3443118032034396
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper proposes a simple and robust zero-shot voice conversion system
with a cycle structure and mel-spectrogram pre-processing. Previous works
suffer from information loss and poor synthesis quality due to their reliance
on a carefully designed bottleneck structure. Moreover, models relying solely
on self-reconstruction loss struggled with reproducing different speakers'
voices. To address these issues, we suggested a cycle-consistency loss that
considers conversion back and forth between target and source speakers.
Additionally, stacked random-shuffled mel-spectrograms and a label smoothing
method are utilized during speaker encoder training to extract a
time-independent global speaker representation from speech, which is the key to
a zero-shot conversion. Our model outperforms existing state-of-the-art results
in both subjective and objective evaluations. Furthermore, it facilitates
cross-lingual voice conversions and enhances the quality of synthesized speech.
Related papers
- SelfVC: Voice Conversion With Iterative Refinement using Self Transformations [42.97689861071184]
SelfVC is a training strategy to improve a voice conversion model with self-synthesized examples.
We develop techniques to derive prosodic information from the audio signal and SSL representations to train predictive submodules in the synthesis model.
Our framework is trained without any text and achieves state-of-the-art results in zero-shot voice conversion on metrics evaluating naturalness, speaker similarity, and intelligibility of synthesized audio.
arXiv Detail & Related papers (2023-10-14T19:51:17Z) - EXPRESSO: A Benchmark and Analysis of Discrete Expressive Speech
Resynthesis [49.04496602282718]
We introduce Expresso, a high-quality expressive speech dataset for textless speech synthesis.
This dataset includes both read speech and improvised dialogues rendered in 26 spontaneous expressive styles.
We evaluate resynthesis quality with automatic metrics for different self-supervised discrete encoders.
arXiv Detail & Related papers (2023-08-10T17:41:19Z) - A unified one-shot prosody and speaker conversion system with
self-supervised discrete speech units [94.64927912924087]
Existing systems ignore the correlation between prosody and language content, leading to degradation of naturalness in converted speech.
We devise a cascaded modular system leveraging self-supervised discrete speech units as language representation.
Experiments show that our system outperforms previous approaches in naturalness, intelligibility, speaker transferability, and prosody transferability.
arXiv Detail & Related papers (2022-11-12T00:54:09Z) - Robust Disentangled Variational Speech Representation Learning for
Zero-shot Voice Conversion [34.139871476234205]
We investigate zero-shot voice conversion from a novel perspective of self-supervised disentangled speech representation learning.
A zero-shot voice conversion is performed by feeding an arbitrary speaker embedding and content embeddings to a sequential variational autoencoder (VAE) decoder.
On TIMIT and VCTK datasets, we achieve state-of-the-art performance on both objective evaluation, i.e., speaker verification (SV) on speaker embedding and content embedding, and subjective evaluation, i.e. voice naturalness and similarity, and remains to be robust even with noisy source/target utterances.
arXiv Detail & Related papers (2022-03-30T23:03:19Z) - Discretization and Re-synthesis: an alternative method to solve the
Cocktail Party Problem [65.25725367771075]
This study demonstrates, for the first time, that the synthesis-based approach can also perform well on this problem.
Specifically, we propose a novel speech separation/enhancement model based on the recognition of discrete symbols.
By utilizing the synthesis model with the input of discrete symbols, after the prediction of discrete symbol sequence, each target speech could be re-synthesized.
arXiv Detail & Related papers (2021-12-17T08:35:40Z) - Training Robust Zero-Shot Voice Conversion Models with Self-supervised
Features [24.182732872327183]
Unsampling Zero-Shot Voice Conversion (VC) aims to modify the speaker characteristic of an utterance to match an unseen target speaker.
We show that high-quality audio samples can be achieved by using a length resupervised decoder.
arXiv Detail & Related papers (2021-12-08T17:27:39Z) - Timbre Transfer with Variational Auto Encoding and Cycle-Consistent
Adversarial Networks [0.6445605125467573]
This research project investigates the application of deep learning to timbre transfer, where the timbre of a source audio can be converted to the timbre of a target audio with minimal loss in quality.
The adopted approach combines Variational Autoencoders with Generative Adversarial Networks to construct meaningful representations of the source audio and produce realistic generations of the target audio.
arXiv Detail & Related papers (2021-09-05T15:06:53Z) - VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised
Speech Representation Disentanglement for One-shot Voice Conversion [54.29557210925752]
One-shot voice conversion can be effectively achieved by speech representation disentanglement.
We employ vector quantization (VQ) for content encoding and introduce mutual information (MI) as the correlation metric during training.
Experimental results reflect the superiority of the proposed method in learning effective disentangled speech representations.
arXiv Detail & Related papers (2021-06-18T13:50:38Z) - FragmentVC: Any-to-Any Voice Conversion by End-to-End Extracting and
Fusing Fine-Grained Voice Fragments With Attention [66.77490220410249]
We propose FragmentVC, in which the latent phonetic structure of the utterance from the source speaker is obtained from Wav2Vec 2.0.
FragmentVC is able to extract fine-grained voice fragments from the target speaker utterance(s) and fuse them into the desired utterance.
This approach is trained with reconstruction loss only without any disentanglement considerations between content and speaker information.
arXiv Detail & Related papers (2020-10-27T09:21:03Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach.
In this approach, we combine a bottle-neck feature extractor (BNE) with a seq2seq synthesis module.
Objective and subjective evaluations show that the proposed any-to-many approach has superior voice conversion performance in terms of both naturalness and speaker similarity.
arXiv Detail & Related papers (2020-09-06T13:01:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.