Cross-cap defects and fault-tolerant logical gates in the surface code and the honeycomb Floquet code
- URL: http://arxiv.org/abs/2310.06917v2
- Date: Tue, 21 May 2024 22:46:10 GMT
- Title: Cross-cap defects and fault-tolerant logical gates in the surface code and the honeycomb Floquet code
- Authors: Ryohei Kobayashi, Guanyu Zhu,
- Abstract summary: Non-orientable geometry provides a new way the emergent symmetry acts on the code space.
We find that the dynamics of the honeycomb Floquet code is precisely described by a condensation operator of the $mathbbZ$ gauge theory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the $\mathbb{Z}_2$ toric code, surface code and Floquet code defined on a non-orientable surface, which can be considered as families of codes extending Shor's 9-qubit code. We investigate the fault-tolerant logical gates of the $\mathbb{Z}_2$ toric code in this setup, which corresponds to $e\leftrightarrow m$ exchanging symmetry of the underlying $\mathbb{Z}_2$ gauge theory. We find that non-orientable geometry provides a new way the emergent symmetry acts on the code space, and discover the new realization of the fault-tolerant Hadamard gate of 2d $\mathbb{Z}_2$ toric code on a surface with a single cross-cap, dubbed a non-orientable toric code. This Hadamard gate can be realized by a constant-depth local unitary circuit modulo non-locality caused by a cross-cap. Via folding, the non-orientable surface code can be turned into a bilayer local quantum code, where the folded cross-cap is equivalent to a bi-layer twist terminated on a gapped boundary and the logical Hadamard only contains local gates with intra-layer couplings. We further obtain the complete logical Clifford gate set for a stack of non-orientable surface codes. We then construct the honeycomb Floquet code in the presence of a single cross-cap, and find that the period of the sequential Pauli measurements acts as a $HZ$ logical gate on the single logical qubit, where the cross-cap enriches the dynamics compared with the orientable case. We find that the dynamics of the honeycomb Floquet code is precisely described by a condensation operator of the $\mathbb{Z}_2$ gauge theory, and illustrate the exotic dynamics of our code in terms of a condensation operator supported at a non-orientable surface.
Related papers
- Floquet Codes from Coupled Spin Chains [0.23408308015481666]
We propose a novel construction of the Floquet 3D toric code and Floquet $X$-cube code through the coupling of spin chains.
Our method extends the Floquet 3D toric code to a broader class of lattices, aligning with its topological phase properties.
Our construction intrinsically supports the extension to $n$-dimensional Floquet $(n,1)$ toric codes and generalized $n$-dimensional Floquet $X$-cube codes.
arXiv Detail & Related papers (2024-10-23T20:28:18Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - Low-overhead non-Clifford fault-tolerant circuits for all non-chiral abelian topological phases [0.7873629568804646]
We propose a family of explicit geometrically local circuits on a 2-dimensional planar grid of qudits.
These circuits are constructed from measuring 1-form symmetries in discrete fixed-point path integrals.
We prove fault tolerance under arbitrary local (including non-Pauli) noise for a very general class of topological circuits.
arXiv Detail & Related papers (2024-03-18T18:00:00Z) - Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - Floquet codes with a twist [0.0]
We describe a method for creating twist defects in the honeycomb Floquet code of Hastings and Haah.
We argue that the twist defects can be used to store and process quantum information fault tolerantly.
arXiv Detail & Related papers (2023-06-13T18:00:01Z) - Topological error correcting processes from fixed-point path integrals [0.7873629568804646]
We analyze and construct topological quantum error correcting codes as dynamical circuits of geometrically local channels and measurements.
We derive two new error-correcting codes, namely a Floquet version of the $3+1$-dimensional toric code using only 2-body measurements, and a dynamic code based on the double-semion string-net path integral.
arXiv Detail & Related papers (2023-03-29T02:32:18Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Quantum simulations of Lattice Gauge Theories (LGTs) are often formulated on an enlarged Hilbert space containing both physical and unphysical sectors.
We provide simple fault-tolerant procedures that exploit such redundancy by combining a phase flip error correction code with the Gauss' law constraint.
arXiv Detail & Related papers (2021-12-09T19:29:34Z) - Surface Code Design for Asymmetric Error Channels [55.41644538483948]
We introduce a surface code design based on the fact that bit flip and phase flip errors in quantum systems are asymmetric.
We show that, compared to symmetric surface codes, our asymmetric surface codes can provide almost double the pseudo-threshold rates.
As the asymmetry of the surface code increases, the advantage in the pseudo-threshold rates begins to saturate for any degree of asymmetry in the channel.
arXiv Detail & Related papers (2021-11-02T10:41:02Z) - Designing the Quantum Channels Induced by Diagonal Gates [0.5735035463793007]
Diagonal gates play an important role in implementing a universal set of quantum operations.
This paper describes the process of preparing a code state, applying a diagonal physical gate, measuring a code syndrome, and applying a Pauli correction.
arXiv Detail & Related papers (2021-09-28T04:39:15Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.