The Expressive Power of Transformers with Chain of Thought
- URL: http://arxiv.org/abs/2310.07923v5
- Date: Thu, 11 Apr 2024 18:03:53 GMT
- Title: The Expressive Power of Transformers with Chain of Thought
- Authors: William Merrill, Ashish Sabharwal,
- Abstract summary: In practice, transformers can be improved by allowing them to use a "chain of thought" or "scratchpad"
We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation.
Our results also imply that linear steps keep transformer decoders within context-sensitive languages.
- Score: 29.839710738657203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a "chain of thought" or "scratchpad", i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps, assuming projected pre-norm (a slight generalization of standard pre-norm), adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps with generalized pre-norm make them recognize exactly the class of polynomial-time solvable problems -- the first exact characterization of a type of transformers in terms of standard complexity classes. Together, this provides a nuanced framework for understanding how the length of a transformer's chain of thought or scratchpad impacts its reasoning power.
Related papers
- Extracting Finite State Machines from Transformers [0.3069335774032178]
We investigate the trainability of transformers trained on regular languages from a mechanistic interpretability perspective.
We empirically find tighter lower bounds on the trainability of transformers, when a finite number of symbols determine the state.
Our mechanistic insight allows us to characterise the regular languages a one-layer transformer can learn with good length generalisation.
arXiv Detail & Related papers (2024-10-08T13:43:50Z) - Transformers are Efficient Compilers, Provably [11.459397066286822]
Transformer-based large language models (LLMs) have demonstrated surprisingly robust performance across a wide range of language-related tasks.
In this paper, we take the first steps towards a formal investigation of using transformers as compilers from an expressive power perspective.
We introduce a representative programming language, Mini-Husky, which encapsulates key features of modern C-like languages.
arXiv Detail & Related papers (2024-10-07T20:31:13Z) - Chain of Thought Empowers Transformers to Solve Inherently Serial Problems [57.58801785642868]
Chain of thought (CoT) is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks.
This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness.
arXiv Detail & Related papers (2024-02-20T10:11:03Z) - Transformers Can Achieve Length Generalization But Not Robustly [76.06308648699357]
We show that the success of length generalization is intricately linked to the data format and the type of position encoding.
We show for the first time that standard Transformers can extrapolate to a sequence length that is 2.5x the input length.
arXiv Detail & Related papers (2024-02-14T18:18:29Z) - Deep Transformers without Shortcuts: Modifying Self-attention for
Faithful Signal Propagation [105.22961467028234]
Skip connections and normalisation layers are ubiquitous for the training of Deep Neural Networks (DNNs)
Recent approaches such as Deep Kernel Shaping have made progress towards reducing our reliance on them.
But these approaches are incompatible with the self-attention layers present in transformers.
arXiv Detail & Related papers (2023-02-20T21:26:25Z) - A Logic for Expressing Log-Precision Transformers [35.25166532364007]
We show that any log-precision transformer can be equivalently expressed as a first-order logic sentence.
This is the tightest known upper bound and first logical characterization of log-precision transformers.
arXiv Detail & Related papers (2022-10-06T04:18:09Z) - The Parallelism Tradeoff: Limitations of Log-Precision Transformers [29.716269397142973]
We prove that transformers whose arithmetic precision is logarithmic in the number of input tokens can be simulated by constant-depth logspace-uniform threshold circuits.
This provides insight on the power of transformers using known results in complexity theory.
arXiv Detail & Related papers (2022-07-02T03:49:34Z) - Error Correction Code Transformer [92.10654749898927]
We propose to extend for the first time the Transformer architecture to the soft decoding of linear codes at arbitrary block lengths.
We encode each channel's output dimension to high dimension for better representation of the bits information to be processed separately.
The proposed approach demonstrates the extreme power and flexibility of Transformers and outperforms existing state-of-the-art neural decoders by large margins at a fraction of their time complexity.
arXiv Detail & Related papers (2022-03-27T15:25:58Z) - On the Power of Saturated Transformers: A View from Circuit Complexity [87.20342701232869]
We show that saturated transformers transcend the limitations of hard-attention transformers.
The jump from hard to saturated attention can be understood as increasing the transformer's effective circuit depth by a factor of $O(log n)$.
arXiv Detail & Related papers (2021-06-30T17:09:47Z) - Thinking Like Transformers [64.96770952820691]
We propose a computational model for the transformer-encoder in the form of a programming language.
We show how RASP can be used to program solutions to tasks that could conceivably be learned by a Transformer.
We provide RASP programs for histograms, sorting, and Dyck-languages.
arXiv Detail & Related papers (2021-06-13T13:04:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.