Is attention required for ICL? Exploring the Relationship Between Model Architecture and In-Context Learning Ability
- URL: http://arxiv.org/abs/2310.08049v3
- Date: Tue, 2 Apr 2024 01:54:53 GMT
- Title: Is attention required for ICL? Exploring the Relationship Between Model Architecture and In-Context Learning Ability
- Authors: Ivan Lee, Nan Jiang, Taylor Berg-Kirkpatrick,
- Abstract summary: We evaluate 13 models capable of causal language modeling across a suite of synthetic in-context learning tasks.
All the considered architectures can perform in-context learning under a wider range of conditions than previously documented.
Several attention alternatives are sometimes competitive with or better in-context learners than transformers.
- Score: 39.42414275888214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What is the relationship between model architecture and the ability to perform in-context learning? In this empirical study, we take the first steps toward answering this question. We evaluate thirteen model architectures capable of causal language modeling across a suite of synthetic in-context learning tasks. These selected architectures represent a broad range of paradigms, including recurrent and convolution-based neural networks, transformers, state space model inspired, and other emerging attention alternatives. We discover that all the considered architectures can perform in-context learning under a wider range of conditions than previously documented. Additionally, we observe stark differences in statistical efficiency and consistency by varying the number of in-context examples and task difficulty. We also measure each architecture's predisposition towards in-context learning when presented with the option to memorize rather than leverage in-context examples. Finally, and somewhat surprisingly, we find that several attention alternatives are sometimes competitive with or better in-context learners than transformers. However, no single architecture demonstrates consistency across all tasks, with performance either plateauing or declining when confronted with a significantly larger number of in-context examples than those encountered during gradient-based training.
Related papers
- ARPA: A Novel Hybrid Model for Advancing Visual Word Disambiguation Using Large Language Models and Transformers [1.6541870997607049]
We present ARPA, an architecture that fuses the unparalleled contextual understanding of large language models with the advanced feature extraction capabilities of transformers.
ARPA's introduction marks a significant milestone in visual word disambiguation, offering a compelling solution.
We invite researchers and practitioners to explore the capabilities of our model, envisioning a future where such hybrid models drive unprecedented advancements in artificial intelligence.
arXiv Detail & Related papers (2024-08-12T10:15:13Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVEN is a model that combines retrieval-augmented masked language modeling and prefix language modeling.
Fusion-in-Context Learning enables the model to leverage more in-context examples without requiring additional training.
Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning.
arXiv Detail & Related papers (2023-08-15T17:59:18Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Decoupled Context Processing for Context Augmented Language Modeling [33.89636308731306]
Language models can be augmented with a context retriever to incorporate knowledge from large external databases.
By leveraging retrieved context, the neural network does not have to memorize the massive amount of world knowledge within its internal parameters, leading to better efficiency, interpretability and modularity.
arXiv Detail & Related papers (2022-10-11T20:05:09Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
We propose a Self-supervised Bidirectional Representation Learning of Commonsense framework, which is compatible with off-the-shelf QA model architectures.
The framework comprises five self-supervised tasks to force the model to fully exploit the additional training signals from contexts containing rich commonsense.
elBERto achieves substantial improvements on out-of-paragraph and no-effect questions where simple lexical similarity comparison does not help.
arXiv Detail & Related papers (2022-03-17T16:23:45Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
We present a grammar-based decoding semantic parsing and adapt typical context modeling methods on top of it.
We evaluate 13 context modeling methods on two large cross-domain datasets, and our best model achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-02-03T11:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.