ETDock: A Novel Equivariant Transformer for Protein-Ligand Docking
- URL: http://arxiv.org/abs/2310.08061v1
- Date: Thu, 12 Oct 2023 06:23:12 GMT
- Title: ETDock: A Novel Equivariant Transformer for Protein-Ligand Docking
- Authors: Yiqiang Yi, Xu Wan, Yatao Bian, Le Ou-Yang and Peilin Zhao
- Abstract summary: Traditional docking methods rely on scoring functions and deep learning to predict the docking between proteins and drugs.
In this paper, we propose a transformer neural network for protein-ligand docking pose prediction.
The experimental results on real datasets show that our model can achieve state-of-the-art performance.
- Score: 36.14826783009814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the docking between proteins and ligands is a crucial and
challenging task for drug discovery. However, traditional docking methods
mainly rely on scoring functions, and deep learning-based docking approaches
usually neglect the 3D spatial information of proteins and ligands, as well as
the graph-level features of ligands, which limits their performance. To address
these limitations, we propose an equivariant transformer neural network for
protein-ligand docking pose prediction. Our approach involves the fusion of
ligand graph-level features by feature processing, followed by the learning of
ligand and protein representations using our proposed TAMformer module.
Additionally, we employ an iterative optimization approach based on the
predicted distance matrix to generate refined ligand poses. The experimental
results on real datasets show that our model can achieve state-of-the-art
performance.
Related papers
- SkelFormer: Markerless 3D Pose and Shape Estimation using Skeletal Transformers [57.46911575980854]
We introduce SkelFormer, a novel markerless motion capture pipeline for multi-view human pose and shape estimation.
Our method first uses off-the-shelf 2D keypoint estimators, pre-trained on large-scale in-the-wild data, to obtain 3D joint positions.
Next, we design a regression-based inverse-kinematic skeletal transformer that maps the joint positions to pose and shape representations from heavily noisy observations.
arXiv Detail & Related papers (2024-04-19T04:51:18Z) - Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge [69.80471117520719]
Re-Dock is a novel diffusion bridge generative model extended to geometric manifold.
We propose energy-to-geometry mapping inspired by the Newton-Euler equation to co-model the binding energy and conformations.
Experiments on designed benchmark datasets including apo-dock and cross-dock demonstrate our model's superior effectiveness and efficiency over current methods.
arXiv Detail & Related papers (2024-02-18T05:04:50Z) - Multi-scale Iterative Refinement towards Robust and Versatile Molecular
Docking [17.28573902701018]
Molecular docking is a key computational tool utilized to predict the binding conformations of small molecules to protein targets.
We introduce DeltaDock, a robust and versatile framework designed for efficient molecular docking.
arXiv Detail & Related papers (2023-11-30T14:09:20Z) - Pre-Training on Large-Scale Generated Docking Conformations with HelixDock to Unlock the Potential of Protein-ligand Structure Prediction Models [42.16524616409125]
In this work, we show that by pre-training on a large-scale docking conformation, we can obtain a protein-ligand structure prediction model with outstanding performance.
The proposed model, HelixDock, aims to acquire the physical knowledge encapsulated by the physics-based docking tools during the pre-training phase.
arXiv Detail & Related papers (2023-10-21T05:54:26Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
We introduce TargetVAE, a target-aware auto-encoder that generates with high binding affinities to arbitrary protein targets.
This is the first effort to unify different representations of proteins into a single model that we name as Protein Multimodal Network (PMN)
arXiv Detail & Related papers (2023-08-02T12:08:17Z) - E3Bind: An End-to-End Equivariant Network for Protein-Ligand Docking [20.266157559473342]
We propose E3Bind, an end-to-end equivariant network that iteratively updates the ligand pose.
E3Bind models the protein-ligand interaction through careful consideration of the geometric constraints in docking.
Experiments on standard benchmark datasets demonstrate the superior performance of our end-to-end trainable model.
arXiv Detail & Related papers (2022-10-12T10:25:54Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
We tackle rigid body protein-protein docking, i.e., computationally predicting the 3D structure of a protein-protein complex from the individual unbound structures.
We design a novel pairwise-independent SE(3)-equivariant graph matching network to predict the rotation and translation to place one of the proteins at the right docked position.
Our model, named EquiDock, approximates the binding pockets and predicts the docking poses using keypoint matching and alignment.
arXiv Detail & Related papers (2021-11-15T18:46:37Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.