BibRank: Automatic Keyphrase Extraction Platform Using~Metadata
- URL: http://arxiv.org/abs/2310.09151v1
- Date: Fri, 13 Oct 2023 14:44:34 GMT
- Title: BibRank: Automatic Keyphrase Extraction Platform Using~Metadata
- Authors: Abdelrhman Eldallal and Eduard Barbu
- Abstract summary: This paper introduces a platform that integrates keyphrase datasets and facilitates the evaluation of keyphrase extraction algorithms.
The platform includes BibRank, an automatic keyphrase extraction algorithm that leverages a rich dataset obtained by parsing word in Bib format.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic Keyphrase Extraction involves identifying essential phrases in a
document. These keyphrases are crucial in various tasks such as document
classification, clustering, recommendation, indexing, searching, summarization,
and text simplification. This paper introduces a platform that integrates
keyphrase datasets and facilitates the evaluation of keyphrase extraction
algorithms. The platform includes BibRank, an automatic keyphrase extraction
algorithm that leverages a rich dataset obtained by parsing bibliographic data
in BibTeX format. BibRank combines innovative weighting techniques with
positional, statistical, and word co-occurrence information to extract
keyphrases from documents. The platform proves valuable for researchers and
developers seeking to enhance their keyphrase extraction algorithms and advance
the field of natural language processing.
Related papers
- SimCKP: Simple Contrastive Learning of Keyphrase Representations [36.88517357720033]
We propose SimCKP, a simple contrastive learning framework that consists of two stages: 1) An extractor-generator that extracts keyphrases by learning context-aware phrase-level representations in a contrastive manner while also generating keyphrases that do not appear in the document; and 2) A reranker that adapts scores for each generated phrase by likewise aligning their representations with the corresponding document.
arXiv Detail & Related papers (2023-10-12T11:11:54Z) - Enhancing Phrase Representation by Information Bottleneck Guided Text Diffusion Process for Keyphrase Extraction [9.307602861891926]
Keyphrase extraction is an important task in Natural Language Processing.
In this study, we propose Diff-KPE to guide the text diffusion process for generating enhanced keyphrase representations.
Experiments show that Diff-KPE outperforms existing KPE methods on a large open domain keyphrase extraction benchmark, OpenKP, and a scientific domain dataset, KP20K.
arXiv Detail & Related papers (2023-08-17T02:26:30Z) - Data Augmentation for Low-Resource Keyphrase Generation [46.52115499306222]
Keyphrase generation is the task of summarizing the contents of any given article into a few salient phrases (or keyphrases)
Existing works for the task mostly rely on large-scale annotated datasets, which are not easy to acquire.
We present data augmentation strategies specifically to address keyphrase generation in purely resource-constrained domains.
arXiv Detail & Related papers (2023-05-29T09:20:34Z) - Improving Keyphrase Extraction with Data Augmentation and Information
Filtering [67.43025048639333]
Keyphrase extraction is one of the essential tasks for document understanding in NLP.
We present a novel corpus and method for keyphrase extraction from the videos streamed on the Behance platform.
arXiv Detail & Related papers (2022-09-11T22:38:02Z) - Applying Transformer-based Text Summarization for Keyphrase Generation [2.28438857884398]
Keyphrases are crucial for searching and systematizing scholarly documents.
In this paper, we experiment with popular transformer-based models for abstractive text summarization.
We show that summarization models are quite effective in generating keyphrases in the terms of the full-match F1-score and BERT.Score.
We also investigate several ordering strategies to target keyphrases.
arXiv Detail & Related papers (2022-09-08T13:01:52Z) - Retrieval-Augmented Multilingual Keyphrase Generation with
Retriever-Generator Iterative Training [66.64843711515341]
Keyphrase generation is the task of automatically predicting keyphrases given a piece of long text.
We call attention to a new setting named multilingual keyphrase generation.
We propose a retrieval-augmented method for multilingual keyphrase generation to mitigate the data shortage problem in non-English languages.
arXiv Detail & Related papers (2022-05-21T00:45:21Z) - Hyperbolic Relevance Matching for Neural Keyphrase Extraction [34.41878064501316]
Keyphrase extraction is a fundamental task in natural language processing and information retrieval.
We design a new hyperbolic matching model (HyperMatch) to represent phrases and documents in the same hyperbolic space.
arXiv Detail & Related papers (2022-05-04T13:13:52Z) - LDKP: A Dataset for Identifying Keyphrases from Long Scientific
Documents [48.84086818702328]
Identifying keyphrases (KPs) from text documents is a fundamental task in natural language processing and information retrieval.
Vast majority of the benchmark datasets for this task are from the scientific domain containing only the document title and abstract information.
This presents three challenges for real-world applications: human-written summaries are unavailable for most documents, the documents are almost always long, and a high percentage of KPs are directly found beyond the limited context of title and abstract.
arXiv Detail & Related papers (2022-03-29T08:44:57Z) - Deep Keyphrase Completion [59.0413813332449]
Keyphrase provides accurate information of document content that is highly compact, concise, full of meanings, and widely used for discourse comprehension, organization, and text retrieval.
We propose textitkeyphrase completion (KPC) to generate more keyphrases for document (e.g. scientific publication) taking advantage of document content along with a very limited number of known keyphrases.
We name it textitdeep keyphrase completion (DKPC) since it attempts to capture the deep semantic meaning of the document content together with known keyphrases via a deep learning framework
arXiv Detail & Related papers (2021-10-29T07:15:35Z) - Exclusive Hierarchical Decoding for Deep Keyphrase Generation [63.357895318562214]
Keyphrase generation (KG) aims to summarize the main ideas of a document into a set of keyphrases.
Previous work in this setting employs a sequential decoding process to generate keyphrases.
We propose an exclusive hierarchical decoding framework that includes a hierarchical decoding process and either a soft or a hard exclusion mechanism.
arXiv Detail & Related papers (2020-04-18T02:58:00Z) - Keyphrase Extraction with Span-based Feature Representations [13.790461555410747]
Keyphrases are capable of providing semantic metadata characterizing documents.
Three approaches to address keyphrase extraction: (i) traditional two-step ranking method, (ii) sequence labeling and (iii) generation using neural networks.
In this paper, we propose a novelty Span Keyphrase Extraction model that extracts span-based feature representation of keyphrase directly from all the content tokens.
arXiv Detail & Related papers (2020-02-13T09:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.