Every quantum helps: Operational advantage of quantum resources beyond convexity
- URL: http://arxiv.org/abs/2310.09154v3
- Date: Tue, 23 Apr 2024 14:33:00 GMT
- Title: Every quantum helps: Operational advantage of quantum resources beyond convexity
- Authors: Kohdai Kuroiwa, Ryuji Takagi, Gerardo Adesso, Hayata Yamasaki,
- Abstract summary: We identify what quantum-mechanical properties are useful to untap a superior performance in quantum technologies.
We provide two operational interpretations of the usefulness of quantum resources without convexity.
- Score: 1.3124513975412255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying what quantum-mechanical properties are useful to untap a superior performance in quantum technologies is a pivotal question. Quantum resource theories provide a unified framework to analyze and understand such properties, as successfully demonstrated for entanglement and coherence. While these are examples of convex resources, for which quantum advantages can always be identified, many physical resources are described by a nonconvex set of free states and their interpretation has so far remained elusive. Here we address the fundamental question of the usefulness of quantum resources without convexity assumption, by providing two operational interpretations of the generalized robustness measure in general resource theories. First, we characterize the generalized robustness in terms of a nonlinear resource witness and reveal that any state is more advantageous than a free one in some multicopy channel discrimination task. Next, we consider a scenario where a theory is characterized by multiple constraints and show that the generalized robustness coincides with the worst-case advantage in a single-copy channel discrimination setting. Based on these characterizations, we conclude that every quantum resource state shows a qualitative and quantitative advantage in discrimination problems in a general resource theory even without any specification on the structure of the free states.
Related papers
- Robustness- and weight-based resource measures without convexity restriction: Multicopy witness and operational advantage in static and dynamical quantum resource theories [1.3124513975412255]
characterizations of robustness- and weight-based measures in general QRTs without convexity restriction.
We establish the usefulness of robustness-based and weight-based techniques beyond the conventional scope of convex QRTs.
arXiv Detail & Related papers (2023-10-13T14:52:49Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Resource theory of Absolute Negativity [0.0]
We introduce the concept of Absolute Negativity to characterise the negativity of sets of quantum devices in a basis-independent way.
We provide a resource theory for our relational notion of Absolute Negativity, which applies to sets of quantum state-measurement pairs.
We illustrate the newly introduced concepts with an exhaustive analysis of a simple case of four qubit state-measurement pairs.
arXiv Detail & Related papers (2022-05-26T16:41:26Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - On a gap in the proof of the generalised quantum Stein's lemma and its
consequences for the reversibility of quantum resources [51.243733928201024]
We show that the proof of the generalised quantum Stein's lemma is not correct due to a gap in the argument leading to Lemma III.9.
This puts into question a number of established results in the literature, in particular the reversibility of quantum entanglement.
arXiv Detail & Related papers (2022-05-05T17:46:05Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quantifying Qubit Magic Resource with Gottesman-Kitaev-Preskill Encoding [58.720142291102135]
We define a resource measure for magic, the sought-after property in most fault-tolerant quantum computers.
Our formulation is based on bosonic codes, well-studied tools in continuous-variable quantum computation.
arXiv Detail & Related papers (2021-09-27T12:56:01Z) - An introductory review on resource theories of generalized nonclassical
light [0.0]
Quantum resource theory is perhaps the most revolutionary framework that quantum physics has ever experienced.
Generalized quantum optical framework strives to bring in several prosperous contemporary ideas.
arXiv Detail & Related papers (2021-03-23T05:10:44Z) - Framework for resource quantification in infinite-dimensional general
probabilistic theories [6.308539010172309]
Resource theories provide a general framework for the characterization of properties of physical systems in quantum mechanics and beyond.
We introduce methods for the quantification of resources in general probabilistic theories (GPTs)
We show that a given resource state enables in channel discrimination tasks over all resourceless states.
We demonstrate applications of the robustness to several resources of physical relevance: optical nonclassicality, entanglement, genuine non-Gaussianity, and coherence.
arXiv Detail & Related papers (2020-09-23T18:00:20Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - General Quantum Resource Theories: Distillation, Formation and
Consistent Resource Measures [3.8073142980733]
Quantum resource theories (QRTs) provide a unified theoretical framework for understanding inherent quantum-mechanical properties that serve as resources in quantum information processing.
But resources motivated by physics may possess intractable mathematical structure to analyze, such as non-uniqueness of maximally resourceful states, lack of convexity, and infinite dimension.
We investigate state conversion and resource measures in general QRTs under minimal assumptions to figure out universal properties of physically motivated quantum resources.
arXiv Detail & Related papers (2020-02-06T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.