Solving Math Word Problems with Reexamination
- URL: http://arxiv.org/abs/2310.09590v2
- Date: Mon, 20 Nov 2023 03:29:23 GMT
- Title: Solving Math Word Problems with Reexamination
- Authors: Yi Bin, Wenhao Shi, Yujuan Ding, Yang Yang, See-Kiong Ng
- Abstract summary: We propose a pseudo-dual (PseDual) learning scheme to model such process, which is model-agnostic.
The pseudo-dual task is specifically defined as filling the numbers in the expression back into the original word problem with numbers masked.
Our pseudo-dual learning scheme has been tested and proven effective when being equipped in several representative MWP solvers through empirical studies.
- Score: 27.80592576792461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Math word problem (MWP) solving aims to understand the descriptive math
problem and calculate the result, for which previous efforts are mostly devoted
to upgrade different technical modules. This paper brings a different
perspective of \textit{reexamination process} during training by introducing a
pseudo-dual task to enhance the MWP solving. We propose a pseudo-dual (PseDual)
learning scheme to model such process, which is model-agnostic thus can be
adapted to any existing MWP solvers. The pseudo-dual task is specifically
defined as filling the numbers in the expression back into the original word
problem with numbers masked. To facilitate the effective joint learning of the
two tasks, we further design a scheduled fusion strategy for the number
infilling task, which smoothly switches the input from the ground-truth math
expressions to the predicted ones. Our pseudo-dual learning scheme has been
tested and proven effective when being equipped in several representative MWP
solvers through empirical studies. \textit{The codes and trained models are
available at:} \url{https://github.com/steven640pixel/PsedualMWP}.
\end{abstract}
Related papers
- From Large to Tiny: Distilling and Refining Mathematical Expertise for Math Word Problems with Weakly Supervision [12.023661884821554]
We introduce an innovative two-stage framework that adeptly transfers mathematical Expertise from large to tiny language models.
Our method fully leverages the semantic understanding capabilities during the searching 'problem-equation' pair.
It demonstrates significantly improved performance on the Math23K and Weak12K datasets compared to existing small model methods.
arXiv Detail & Related papers (2024-03-21T13:29:54Z) - MWPRanker: An Expression Similarity Based Math Word Problem Retriever [12.638925774492403]
Math Word Problems (MWPs) in online assessments help test the ability of the learner to make critical inferences.
We propose a tool in this work for MWP retrieval.
arXiv Detail & Related papers (2023-07-03T15:44:18Z) - JiuZhang 2.0: A Unified Chinese Pre-trained Language Model for
Multi-task Mathematical Problem Solving [77.51817534090789]
We propose textbfJiuZhang2.0, a unified Chinese PLM specially for multi-task mathematical problem solving.
Our idea is to maintain a moderate-sized model and employ the emphcross-task knowledge sharing to improve the model capacity in a multi-task setting.
arXiv Detail & Related papers (2023-06-19T15:45:36Z) - Analogical Math Word Problems Solving with Enhanced Problem-Solution
Association [37.70402758178867]
We propose to build a novel MWP solver by leveraging analogical MWPs.
The key idea, named analogy identification, is to associate the analogical MWP pairs in a latent space.
A solution discriminator is integrated into the MWP solver to enhance the association between the representations of MWPs and their true solutions.
arXiv Detail & Related papers (2022-12-01T19:50:30Z) - Dynamic Prompt Learning via Policy Gradient for Semi-structured
Mathematical Reasoning [150.17907456113537]
We present Tabular Math Word Problems (TabMWP), a new dataset containing 38,431 grade-level problems that require mathematical reasoning.
We evaluate different pre-trained models on TabMWP, including the GPT-3 model in a few-shot setting.
We propose a novel approach, PromptPG, which utilizes policy gradient to learn to select in-context examples from a small amount of training data.
arXiv Detail & Related papers (2022-09-29T08:01:04Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
This paper aims to advance the mathematical intelligence of machines by presenting the first Chinese mathematical pre-trained language model(PLM)
Unlike other standard NLP tasks, mathematical texts are difficult to understand, since they involve mathematical terminology, symbols and formulas in the problem statement.
We design a novel curriculum pre-training approach for improving the learning of mathematical PLMs, consisting of both basic and advanced courses.
arXiv Detail & Related papers (2022-06-13T17:03:52Z) - LogicSolver: Towards Interpretable Math Word Problem Solving with
Logical Prompt-enhanced Learning [135.8654475934613]
We first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs.
We propose a novel approach with logical prompt and interpretation, called Logicr.
With these improved semantic representations, our Logicr generates corresponding solution expressions and interpretable knowledge in accord with the generated solution expressions.
arXiv Detail & Related papers (2022-05-17T11:01:52Z) - Generate & Rank: A Multi-task Framework for Math Word Problems [48.99880318686938]
Math word problem (MWP) is a challenging and critical task in natural language processing.
We propose Generate & Rank, a framework based on a generative pre-trained language model.
By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions.
arXiv Detail & Related papers (2021-09-07T12:21:49Z) - MWP-BERT: A Strong Baseline for Math Word Problems [47.51572465676904]
Math word problem (MWP) solving is the task of transforming a sequence of natural language problem descriptions to executable math equations.
Although recent sequence modeling MWP solvers have gained credits on the math-text contextual understanding, pre-trained language models (PLM) have not been explored for solving MWP.
We introduce MWP-BERT to obtain pre-trained token representations that capture the alignment between text description and mathematical logic.
arXiv Detail & Related papers (2021-07-28T15:28:41Z) - WARM: A Weakly (+Semi) Supervised Model for Solving Math word Problems [21.501567886241087]
Solving math word problems (MWPs) is an important and challenging problem in natural language processing.
We propose a weakly supervised model for solving MWPs by requiring only the final answer as supervision.
We demonstrate that our approach achieves accuracy gains of 4.5% and 32% over the state-of-the-art weakly supervised approach.
arXiv Detail & Related papers (2021-04-14T09:25:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.