Robust Multi-Agent Reinforcement Learning by Mutual Information Regularization
- URL: http://arxiv.org/abs/2310.09833v3
- Date: Tue, 21 May 2024 15:54:10 GMT
- Title: Robust Multi-Agent Reinforcement Learning by Mutual Information Regularization
- Authors: Simin Li, Ruixiao Xu, Jingqiao Xiu, Yuwei Zheng, Pu Feng, Yaodong Yang, Xianglong Liu,
- Abstract summary: Existing robust MARL methods either approximate or enumerate all possible threat scenarios against worst-case adversaries.
We frame robust MARL as an inference problem, with worst-case robustness implicitly optimized under all threat scenarios.
Within this framework, we demonstrate that Mutual Information Regularization as Robust Regularization (MIR3) during routine training is guaranteed to maximize a lower bound on robustness.
- Score: 15.11457665677937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multi-agent reinforcement learning (MARL), ensuring robustness against unpredictable or worst-case actions by allies is crucial for real-world deployment. Existing robust MARL methods either approximate or enumerate all possible threat scenarios against worst-case adversaries, leading to computational intensity and reduced robustness. In contrast, human learning efficiently acquires robust behaviors in daily life without preparing for every possible threat. Inspired by this, we frame robust MARL as an inference problem, with worst-case robustness implicitly optimized under all threat scenarios via off-policy evaluation. Within this framework, we demonstrate that Mutual Information Regularization as Robust Regularization (MIR3) during routine training is guaranteed to maximize a lower bound on robustness, without the need for adversaries. Further insights show that MIR3 acts as an information bottleneck, preventing agents from over-reacting to others and aligning policies with robust action priors. In the presence of worst-case adversaries, our MIR3 significantly surpasses baseline methods in robustness and training efficiency while maintaining cooperative performance in StarCraft II and robot swarm control. When deploying the robot swarm control algorithm in the real world, our method also outperforms the best baseline by 14.29%.
Related papers
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Outlier Robust Adversarial Training [57.06824365801612]
We introduce Outlier Robust Adversarial Training (ORAT) in this work.
ORAT is based on a bi-level optimization formulation of adversarial training with a robust rank-based loss function.
We show that the learning objective of ORAT satisfies the $mathcalH$-consistency in binary classification, which establishes it as a proper surrogate to adversarial 0/1 loss.
arXiv Detail & Related papers (2023-09-10T21:36:38Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
We study the robustness of reinforcement learning with adversarially perturbed state observations.
With a fixed agent policy, we demonstrate that an optimal adversary to perturb state observations can be found.
For DRL settings, this leads to a novel empirical adversarial attack to RL agents via a learned adversary that is much stronger than previous ones.
arXiv Detail & Related papers (2021-01-21T05:38:52Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
Recent studies have shown that deep reinforcement learning agents are vulnerable to small adversarial perturbations on the agent's inputs.
We propose RADIAL-RL, a principled framework to train reinforcement learning agents with improved robustness against adversarial attacks.
arXiv Detail & Related papers (2020-08-05T07:49:42Z) - Robust Reinforcement Learning using Adversarial Populations [118.73193330231163]
Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness.
We show that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary.
We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training.
arXiv Detail & Related papers (2020-08-04T20:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.