Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models
- URL: http://arxiv.org/abs/2310.09912v3
- Date: Thu, 30 Nov 2023 11:03:01 GMT
- Title: Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models
- Authors: Zijian Zhang, Luping Liu, Zhijie Lin, Yichen Zhu, Zhou Zhao
- Abstract summary: We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models.
We employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself.
By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions.
- Score: 63.1637853118899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the first unsupervised and learning-based method to identify
interpretable directions in h-space of pre-trained diffusion models. Our method
is derived from an existing technique that operates on the GAN latent space.
Specifically, we employ a shift control module that works on h-space of
pre-trained diffusion models to manipulate a sample into a shifted version of
itself, followed by a reconstructor to reproduce both the type and the strength
of the manipulation. By jointly optimizing them, the model will spontaneously
discover disentangled and interpretable directions. To prevent the discovery of
meaningless and destructive directions, we employ a discriminator to maintain
the fidelity of shifted sample. Due to the iterative generative process of
diffusion models, our training requires a substantial amount of GPU VRAM to
store numerous intermediate tensors for back-propagating gradient. To address
this issue, we propose a general VRAM-efficient training algorithm based on
gradient checkpointing technique to back-propagate any gradient through the
whole generative process, with acceptable occupancy of VRAM and sacrifice of
training efficiency. Compared with existing related works on diffusion models,
our method inherently identifies global and scalable directions, without
necessitating any other complicated procedures. Extensive experiments on
various datasets demonstrate the effectiveness of our method.
Related papers
- Diffusion State-Guided Projected Gradient for Inverse Problems [82.24625224110099]
We propose Diffusion State-Guided Projected Gradient (DiffStateGrad) for inverse problems.
DiffStateGrad projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process.
We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise.
arXiv Detail & Related papers (2024-10-04T14:26:54Z) - Learning Diffusion Priors from Observations by Expectation Maximization [6.224769485481242]
We present a novel method based on the expectation-maximization algorithm for training diffusion models from incomplete and noisy observations only.
As part of our method, we propose and motivate an improved posterior sampling scheme for unconditional diffusion models.
arXiv Detail & Related papers (2024-05-22T15:04:06Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
We propose a novel diffusion-based image generation method called the observation-guided diffusion probabilistic model (OGDM)
Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain.
We demonstrate the effectiveness of our training algorithm using diverse inference techniques on strong diffusion model baselines.
arXiv Detail & Related papers (2023-10-06T06:29:06Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Towards Controllable Diffusion Models via Reward-Guided Exploration [15.857464051475294]
We propose a novel framework that guides the training-phase of diffusion models via reinforcement learning (RL)
RL enables calculating policy gradients via samples from a pay-off distribution proportional to exponential scaled rewards, rather than from policies themselves.
Experiments on 3D shape and molecule generation tasks show significant improvements over existing conditional diffusion models.
arXiv Detail & Related papers (2023-04-14T13:51:26Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems [64.29491112653905]
We propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods.
Specifically, we prove that if tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG with the denoised data ensures the data consistency update to remain in the tangent space.
Our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method.
arXiv Detail & Related papers (2023-03-10T07:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.