End-to-end Multichannel Speaker-Attributed ASR: Speaker Guided Decoder
and Input Feature Analysis
- URL: http://arxiv.org/abs/2310.10106v1
- Date: Mon, 16 Oct 2023 06:40:18 GMT
- Title: End-to-end Multichannel Speaker-Attributed ASR: Speaker Guided Decoder
and Input Feature Analysis
- Authors: Can Cui (MULTISPEECH), Imran Ahamad Sheikh, Mostafa Sadeghi
(MULTISPEECH), Emmanuel Vincent (MULTISPEECH)
- Abstract summary: We present an end-to-end multichannel speaker-attributed automatic speech recognition (MC-SA-ASR) system that combines a Conformer-based encoder with multi-frame crosschannel attention and a speaker-attributed Transformer-based decoder.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an end-to-end multichannel speaker-attributed automatic speech
recognition (MC-SA-ASR) system that combines a Conformer-based encoder with
multi-frame crosschannel attention and a speaker-attributed Transformer-based
decoder. To the best of our knowledge, this is the first model that efficiently
integrates ASR and speaker identification modules in a multichannel setting. On
simulated mixtures of LibriSpeech data, our system reduces the word error rate
(WER) by up to 12% and 16% relative compared to previously proposed
single-channel and multichannel approaches, respectively. Furthermore, we
investigate the impact of different input features, including multichannel
magnitude and phase information, on the ASR performance. Finally, our
experiments on the AMI corpus confirm the effectiveness of our system for
real-world multichannel meeting transcription.
Related papers
- MLCA-AVSR: Multi-Layer Cross Attention Fusion based Audio-Visual Speech Recognition [62.89464258519723]
We propose a multi-layer cross-attention fusion based AVSR approach that promotes representation of each modality by fusing them at different levels of audio/visual encoders.
Our proposed approach surpasses the first-place system, establishing a new SOTA cpCER of 29.13% on this dataset.
arXiv Detail & Related papers (2024-01-07T08:59:32Z) - Audio-visual End-to-end Multi-channel Speech Separation, Dereverberation
and Recognition [52.11964238935099]
An audio-visual multi-channel speech separation, dereverberation and recognition approach is proposed in this paper.
Video input is consistently demonstrated in mask-based MVDR speech separation, DNN-WPE or spectral mapping (SpecM) based speech dereverberation front-end.
Experiments were conducted on the mixture overlapped and reverberant speech data constructed using simulation or replay of the Oxford LRS2 dataset.
arXiv Detail & Related papers (2023-07-06T10:50:46Z) - Audio-visual multi-channel speech separation, dereverberation and
recognition [70.34433820322323]
This paper proposes an audio-visual multi-channel speech separation, dereverberation and recognition approach.
The advantage of the additional visual modality over using audio only is demonstrated on two neural dereverberation approaches.
Experiments conducted on the LRS2 dataset suggest that the proposed audio-visual multi-channel speech separation, dereverberation and recognition system outperforms the baseline.
arXiv Detail & Related papers (2022-04-05T04:16:03Z) - End-to-End Multi-speaker ASR with Independent Vector Analysis [80.83577165608607]
We develop an end-to-end system for multi-channel, multi-speaker automatic speech recognition.
We propose a paradigm for joint source separation and dereverberation based on the independent vector analysis (IVA) paradigm.
arXiv Detail & Related papers (2022-04-01T05:45:33Z) - The Volcspeech system for the ICASSP 2022 multi-channel multi-party
meeting transcription challenge [18.33054364289739]
This paper describes our submission to ICASSP 2022 Multi-channel Multi-party Meeting Transcription (M2MeT) Challenge.
For Track 1, we propose several approaches to empower the clustering-based speaker diarization system.
For Track 2, we develop our system using the Conformer model in a joint CTC-attention architecture.
arXiv Detail & Related papers (2022-02-09T03:38:39Z) - Multi-Channel End-to-End Neural Diarization with Distributed Microphones [53.99406868339701]
We replace Transformer encoders in EEND with two types of encoders that process a multi-channel input.
We also propose a model adaptation method using only single-channel recordings.
arXiv Detail & Related papers (2021-10-10T03:24:03Z) - Self-Attention Channel Combinator Frontend for End-to-End Multichannel
Far-field Speech Recognition [1.0276024900942875]
When a sufficiently large far-field training data is presented, jointly optimizing a multichannel and an end-to-end (E2E) Automatic Speech Recognition (ASR) backend shows promising results.
Recent literature has shown traditional beamformer designs, such as MVDR (Minimum Varianceless Response) or fixed beamformers can be successfully integrated into an E2E ASR system with learnable parameters.
We propose the self-attention channel Distortionator (SACC) ASR, which leverages the self-attention mechanism to combine multichannel audio signals in the magnitude spectral domain.
arXiv Detail & Related papers (2021-09-10T11:03:43Z) - Multi-Channel Transformer Transducer for Speech Recognition [15.268402294151468]
We present a novel speech recognition model, Multi-Channel Transformer Transducer (MCTT)
MCTT features end-to-end multi-channel training, low cost, and low latency so that it is suitable for streaming decoding in on-device speech recognition.
arXiv Detail & Related papers (2021-08-30T01:50:51Z) - Audio-visual Multi-channel Recognition of Overlapped Speech [79.21950701506732]
This paper presents an audio-visual multi-channel overlapped speech recognition system featuring tightly integrated separation front-end and recognition back-end.
Experiments suggest that the proposed multi-channel AVSR system outperforms the baseline audio-only ASR system by up to 6.81% (26.83% relative) and 22.22% (56.87% relative) absolute word error rate (WER) reduction on overlapped speech constructed using either simulation or replaying of the lipreading sentence 2 dataset respectively.
arXiv Detail & Related papers (2020-05-18T10:31:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.