On Context Utilization in Summarization with Large Language Models
- URL: http://arxiv.org/abs/2310.10570v6
- Date: Thu, 14 Nov 2024 06:09:47 GMT
- Title: On Context Utilization in Summarization with Large Language Models
- Authors: Mathieu Ravaut, Aixin Sun, Nancy F. Chen, Shafiq Joty,
- Abstract summary: Large language models (LLMs) excel in abstractive summarization tasks, delivering fluent and pertinent summaries.
Recent advancements have extended their capabilities to handle long-input contexts, exceeding 100k tokens.
We conduct the first comprehensive study on context utilization and position bias in summarization.
- Score: 83.84459732796302
- License:
- Abstract: Large language models (LLMs) excel in abstractive summarization tasks, delivering fluent and pertinent summaries. Recent advancements have extended their capabilities to handle long-input contexts, exceeding 100k tokens. However, in question answering, language models exhibit uneven utilization of their input context. They tend to favor the initial and final segments, resulting in a U-shaped performance pattern concerning where the answer is located within the input. This bias raises concerns, particularly in summarization where crucial content may be dispersed throughout the source document(s). Besides, in summarization, mapping facts from the source to the summary is not trivial as salient content is usually re-phrased. In this paper, we conduct the first comprehensive study on context utilization and position bias in summarization. Our analysis encompasses 6 LLMs, 10 datasets, and 5 evaluation metrics. We introduce a new evaluation benchmark called MiddleSum on the which we benchmark two alternative inference methods to alleviate position bias: hierarchical summarization and incremental summarization. Our code and data can be found here: https://github.com/ntunlp/MiddleSum.
Related papers
- On Positional Bias of Faithfulness for Long-form Summarization [83.63283027830657]
Large Language Models (LLMs) often exhibit positional bias in long-context settings, under-attending to information in the middle of inputs.
We investigate the presence of this bias in long-form summarization, its impact on faithfulness, and various techniques to mitigate this bias.
arXiv Detail & Related papers (2024-10-31T03:50:15Z) - Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
We propose a systematically created human-annotated dataset consisting of coherent summaries for five publicly available datasets and natural language user feedback.
Preliminary experiments with Falcon-40B and Llama-2-13B show significant performance improvements (10% Rouge-L) in terms of producing coherent summaries.
arXiv Detail & Related papers (2024-07-05T20:25:04Z) - Source Identification in Abstractive Summarization [0.8883733362171033]
We define input sentences that contain essential information in the generated summary as $textitsource sentences$ and study how abstractive summaries are made by analyzing the source sentences.
We formulate automatic source sentence detection and compare multiple methods to establish a strong baseline for the task.
Experimental results show that the perplexity-based method performs well in highly abstractive settings, while similarity-based methods robustly in relatively extractive settings.
arXiv Detail & Related papers (2024-02-07T09:09:09Z) - AugSumm: towards generalizable speech summarization using synthetic
labels from large language model [61.73741195292997]
Abstractive speech summarization (SSUM) aims to generate human-like summaries from speech.
conventional SSUM models are mostly trained and evaluated with a single ground-truth (GT) human-annotated deterministic summary.
We propose AugSumm, a method to leverage large language models (LLMs) as a proxy for human annotators to generate augmented summaries.
arXiv Detail & Related papers (2024-01-10T18:39:46Z) - Element-aware Summarization with Large Language Models: Expert-aligned
Evaluation and Chain-of-Thought Method [35.181659789684545]
Automatic summarization generates concise summaries that contain key ideas of source documents.
References from CNN/DailyMail and BBC XSum are noisy, mainly in terms of factual hallucination and information redundancy.
We propose a Summary Chain-of-Thought (SumCoT) technique to elicit LLMs to generate summaries step by step.
Experimental results show our method outperforms state-of-the-art fine-tuned PLMs and zero-shot LLMs by +4.33/+4.77 in ROUGE-L.
arXiv Detail & Related papers (2023-05-22T18:54:35Z) - Evaluating the Factual Consistency of Large Language Models Through News
Summarization [97.04685401448499]
We propose a new benchmark called FIB(Factual Inconsistency Benchmark) that focuses on the task of summarization.
For factually consistent summaries, we use human-written reference summaries that we manually verify as factually consistent.
For factually inconsistent summaries, we generate summaries from a suite of summarization models that we have manually annotated as factually inconsistent.
arXiv Detail & Related papers (2022-11-15T18:50:34Z) - Summ^N: A Multi-Stage Summarization Framework for Long Input Dialogues
and Documents [13.755637074366813]
SummN is a simple, flexible, and effective multi-stage framework for input texts longer than the maximum context lengths of typical pretrained LMs.
It can process input text of arbitrary length by adjusting the number of stages while keeping the LM context size fixed.
Our experiments demonstrate that SummN significantly outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2021-10-16T06:19:54Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
We present the first application of the BERTSum model to conversational language.
We generate abstractive summaries of narrated instructional videos across a wide variety of topics.
We envision this integrated as a feature in intelligent virtual assistants, enabling them to summarize both written and spoken instructional content upon request.
arXiv Detail & Related papers (2020-08-21T20:59:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.