Exploring the Power of Graph Neural Networks in Solving Linear
Optimization Problems
- URL: http://arxiv.org/abs/2310.10603v1
- Date: Mon, 16 Oct 2023 17:31:25 GMT
- Title: Exploring the Power of Graph Neural Networks in Solving Linear
Optimization Problems
- Authors: Chendi Qian, Didier Ch\'etelat, Christopher Morris
- Abstract summary: graph neural networks (MPNNs) speed up solving mixed-integer optimization problems.
We show that MPNNs' effectiveness in emulating linear optimization remain largely unclear.
We highlight how MPNNs can serve as a lightweight proxy for solving linear optimization problems.
- Score: 5.966097889241178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, machine learning, particularly message-passing graph neural
networks (MPNNs), has gained traction in enhancing exact optimization
algorithms. For example, MPNNs speed up solving mixed-integer optimization
problems by imitating computational intensive heuristics like strong branching,
which entails solving multiple linear optimization problems (LPs). Despite the
empirical success, the reasons behind MPNNs' effectiveness in emulating linear
optimization remain largely unclear. Here, we show that MPNNs can simulate
standard interior-point methods for LPs, explaining their practical success.
Furthermore, we highlight how MPNNs can serve as a lightweight proxy for
solving LPs, adapting to a given problem instance distribution. Empirically, we
show that MPNNs solve LP relaxations of standard combinatorial optimization
problems close to optimality, often surpassing conventional solvers and
competing approaches in solving time.
Related papers
- Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
We introduce a novel algorithm, denoted hereafter as QRF-GNN, leveraging the power of GNNs to efficiently solve Combinatorial optimization (CO) problems.
It relies on unsupervised learning by minimizing the loss function derived from QUBO relaxation.
Results of experiments show that QRF-GNN drastically surpasses existing learning-based approaches and is comparable to the state-of-the-art conventionals.
arXiv Detail & Related papers (2024-07-23T13:34:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Reducing the Need for Backpropagation and Discovering Better Optima With
Explicit Optimizations of Neural Networks [4.807347156077897]
We propose a computationally efficient alternative for optimizing neural networks.
We derive an explicit solution to a simple feed-forward language model.
We show that explicit solutions perform near-optimality in experiments.
arXiv Detail & Related papers (2023-11-13T17:38:07Z) - An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making [0.0]
We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems.
We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to instances problems.
arXiv Detail & Related papers (2023-11-12T21:54:53Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - On Representing Linear Programs by Graph Neural Networks [30.998508318941017]
Graph neural network (GNN) is considered a suitable machine learning model for optimization problems.
This paper establishes the theoretical foundation of applying GNNs to solving linear program (LP) problems.
We show that properly built GNNs can reliably predict feasibility, boundedness, and an optimal solution for each LP in a broad class.
arXiv Detail & Related papers (2022-09-25T18:27:33Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Learning to solve Minimum Cost Multicuts efficiently using Edge-Weighted
Graph Convolutional Neural Networks [13.985534521589257]
Graph convolutional neural networks (GNN) have proven to be promising in the context of optimization.
We adapt various GNN including Graph Convolutional Networks, Signed Graph Convolutional Networks and Graph Isomorphic Networks.
We provide the first approach towards end-to-end trainable multicuts.
arXiv Detail & Related papers (2022-04-04T10:21:02Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
A novel framework for proactive caching is proposed in this paper.
It combines model-based optimization with data-driven techniques by transforming an optimization problem into a grayscale image.
Numerical results show that the proposed scheme can reduce 71.6% computation time with only 0.8% additional performance cost.
arXiv Detail & Related papers (2021-08-15T21:32:47Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.